
IgnisHPC
Release 2.0

César Piñeiro and Juan C. Pichel

Jul 13, 2022

Contents

1 Getting Started 2
1.1 Requirements . 2
1.2 Installation . 2
1.3 Creating IgnisHPC Containers . 2
1.4 Deploying IgnisHPC Containers . 3
1.5 Launching the first job . 5

2 API 6
2.1 BasicType Reference . 6
2.2 Driver . 7
2.3 Executor . 25

3 Docker Images 28
3.1 Background . 28
3.2 Details . 28

4 Properties 30
4.1 How to set properties? . 30
4.2 Property list . 31

Index 38

About

One of the most important issues in the path to the convergence of High Performance Computing (HPC) and Big
Data is caused by the differences in their software stacks. Despite some research efforts, the interoperability between
their programming models and languages is still limited. To deal with this problem we introduce a new comput-
ing framework called IgnisHPC, whose main objective is to unify the execution of Big Data and HPC workloads
in the same framework. IgnisHPC has native support for multi-language applications using JVM and non-JVM-
based languages (currently Java, Python and C/C++). Since MPI was used as its backbone technology, IgnisHPC
takes advantage of many communication models and network architectures. Moreover, MPI applications can be
directly executed in a efficient way in the framework. The main consequence is that users could combine in the same

1

index.html

multi-language code HPC tasks (using MPI) with Big Data tasks (using MapReduce operations). The experimental
evaluation demonstrates the benefits of our proposal in terms of performance and productivity with respect to other
frameworks such as Spark. IgnisHPC is publicly available for the Big Data and HPC research community.

1 Getting Started

IgnisHPC is a modularized docker framework consisting of multiple source code repositories. The framework is open
source, so all repositories can be found in GitHub: IgnisHPC.

Next we summarize the minimum steps to execute a simple job in IgnisHPC.

1.1 Requirements

As we mentioned, IgnisHPC is a dockerized framework, so all the system modules are executed inside docker containers.
On the other hand, IgnisHPC external dependencies such as schedulers or image storage can be installed independently,
but IgnisHPC includes a dockerized version of them.

Therefore, the minimum requirements to run Ignis are:

1. Docker: It must be installed and accessible. We recommend using the newest version available.

2. Python3: Available by default in most Linux distributions. It is used to execute a deploy script and simplify the
installation of IgnisHPC and its dependencies.

3. Pip: The deploy script is available as a pip package, although it can be downloaded from the source code repos-
itory. In any case, using pip is the easiest way to install IgnisHPC.

4. Git (optional): The git binary is required for building IgnisHPC images from repositories.

1.2 Installation

IgnisHPC can be installed just using the following command:

$ pip install ignishpc

Once the command is executed, we can check that we have the ignis-deploy command available in the path. This
process must be carried out in all the computing nodes where IgnisHPC is going to be executed.

1.3 Creating IgnisHPC Containers

Images of IgnisHPC containers are not available for download. They must be built in your runtime environment. This
allows the creation of a custom development environment with complete isolation from other framework installations
even on the same machines.

In this example we will use a local docker repository and ignishpc as the base path for all images.

$ ignis-deploy registry start --default

This command will launch a docker repository that will be available on port 5000.
--default parameter indicates that other calls to ignis-deploy should use this repository as the default source.

2

https://github.com/ignishpc

Once executed, we will receive the following warning message:

info: add '{insecure-registries" : ["myhost:5000"]}' to /etc/docker/daemon.json and␣
→˓restart

docker daemon service
use myhost:5000 to refer the registry

The docker registry requires a certificate for validation. We can create one locally or add {insecure-registries"
: ["myhost:5000"]} to /etc/docker/daemon.json with the aim of forcing docker to use an insecure one.
Do not forget to restart the docker daemon to reload the configuration.

Once the registration is available, we can proceed with the creation of the IgnisHPC images:

$ ignis-deploy images build --full --sources \
https://github.com/ignishpc/dockerfiles.git \
https://github.com/ignishpc/backend.git \
https://github.com/ignishpc/core-cpp.git \
https://github.com/ignishpc/core-python.git \

https://github.com/ignishpc/core-go.git

The first two repositories are essential for the construction of the base images. The command can be executed in several
phases, it is not necessary to specify all the repositories in the same execution. The only restriction is that if you use
the --full parameter, which creates an extra image with all the core repositories, you must have all the cores together.
This allows users to create an image that can run Python, C++ and Go codes in the same container.

Finally, IgnisHPC files can be extracted from an image with:

$ docker run --rm -v $(pwd):/target <ignis-image> ignis-export-all /target

The result will not be executable but can be used in application development.

1.4 Deploying IgnisHPC Containers

Once all images are created, it is necessary to deploy the containers. IgnisHPC jobs are launched using the submitter
module, but to use a cluster it requires a resource and scheduler manager such as Nomad or Mesos.

Alternatively, IgnisHPC can also be launched as a slurm job in an HPC cluster, docker is replaced by singularity, so a
different submitter must be used.

Next we show examples deploying the containers locally (no manager is needed), and using Nomad, Mesos and Slurm.

Docker (Only local)

Submitter using an http endpoint:

$ ignis-deploy submitter start --dfs <working-directory-path> --scheduler docker tcp://
→˓myhost:2375

Submitter using a Unix-socket:

$ ignis-deploy submitter start --dfs <working-directory-path> --scheduler docker /var/
→˓run/docker.sock \
--mount /var/run/docker.sock /var/run/docker.sock

3

Nomad

Master node:

$ ignis-deploy nomad start --password 1234 --volumes <working-directory-path*>

Worker nodes:

$ ignis-deploy nomad start --password 1234 --join myhost1 --default-registry myhost1:5000

Submitter:

$ ignis-deploy submitter start --dfs <working-directory-path*> \
--scheduler nomad http://myhostX:4646

* The working directory must be available on all nodes via NFS (Network File System) or a DFS (Distributed File
System). (Only required for working with files)

Mesos

Zookeeper is requiered by Mesos:

$ ignis-deploy zookeeper start --password 1234

Master node:

$ ignis-deploy mesos start -q 1 --name master -zk zk://master:2281 \
--service [marathon | singularity] --port-service 8888

Worker nodes:

$ ignis-deploy mesos start --name nodoX -zk zk://master:2281 \
--port-service 8888 --default-registry master:5000

Submitter:

$ ignis-deploy submitter start --dfs <working-directory-path*> \
--scheduler [marathon | singularity] http://master:8888

* The working directory must be available on all nodes via NFS (Network File System) or a DFS (Distributed File
System). (Only required for working with files)

Slurm

The ignis-slurm submitter can be obtained from ignishpc/slurm-submitter with:

$ docker run --rm -v $(pwd):/target ignishpc/slurm-submitter ignis-export /target

This submitter will allow you to launch ignisHPC on a cluster as a non-root user and without docker.

IgnisHPC Docker images can be converted to singulairty image files with:

$ ignis-deploy images singularity [--host] ignishpc/full ignis_full.sif

4

The basic syntax of ignis-slurm is the same as the later shown ignis-submit, but a first parameter with job-time
must be passed to be requested to slurm. The time can be specified in any format supported by slurm. For example, a
10 minute job should start with:

$ ignis-slurm 00:10:00

In addition, help text can be displayed using:

$ ignis-slurm --help

1.5 Launching the first job

The first step to launch a job is to connect to the submiter container. The default password is ignis, but we can change
it inside the container or choose one when launching the submitter.:

$ ssh root@myhost -p 2222

The code we will use as an example is the classic Wordcount application, which can be seen below.

#!/usr/bin/python

import ignis

Initialization of the framework
ignis.Ignis.start()
Resources/Configuration of the cluster
prop = ignis.IProperties()
prop["ignis.executor.image"] = "ignishpc/python"
prop["ignis.executor.instances"] = "1"
prop["ignis.executor.cores"] = "2"
prop["ignis.executor.memory"] = "1GB"
Construction of the cluster
cluster = ignis.ICluster(prop)

Initialization of a Python Worker in the cluster
worker = ignis.IWorker(cluster, "python")
Task 1 - Tokenize text into pairs ('word', 1)
text = worker.textFile("text.txt")
words = text.flatmap(lambda line: [(word, 1) for word in line.split()])
Task 2 - Reduce pairs with same word and obtain totals
count = words.toPair().reduceByKey(lambda a, b: a + b)
Print results to file
count.saveAsTextFile("wordcount.txt")

Stop the framework
ignis.Ignis.stop()

In order to run it, we need to create a file containing a text sample (text.txt) and store it in the working directory. By
default the submitter sets the working directory to /media/dfs. All relative paths used in the source code are resolved
using this working directory, so /media/dfs/text.txt is an alias of text.txt.

Finally, we can execute our code using the submitter:

5

$ ignis-submit ignishpc/python python3 driver.py

or:

$ ignis-submit ignishpc/python ./driver.py

When the execution has finished, we can see the result of the execution in wordcount.txt located in the working
directory. If we want to check the execution logs, we must navigate to the scheduler web or use docker log in case
of using docker directly.

Launching without Container

The ignis-submit can also be used outside the submiter container, for example where permanent containers are not
allowed:

$ docker run --rm -v $(pwd):/target ignishpc/submitter ignis-export /target

This command will create a ignis folder in the current directory with everything needed to run the submiter. The
ignis-deploy command configures the submitter container, but when there is no container, we must set the con-
figuration manually. The submitter needs a dfs and a scheduler, as ignis-deploy showed, these can be defined as
environment variables or in ignis/etc/ignis.conf property file.

set current directory as job directory (ignis.dfs.id in ignis.conf)
export IGNIS_DFS_ID=$(pwd)
set docker as scheduler (ignis.scheduler.type in ignis.conf)
export IGNIS_SCHEDULER_TYPE=docker
set where docker is available (ignis.scheduler.url in ignis.conf)
export IGNIS_SCHEDULER_URL=/var/run/docker.sock

The above example could be launched as follows:

$./ignis/bin/ignis-submit ignishpc/python ./driver.py

2 API

2.1 BasicType Reference

class Boolean
References True of False value condition.

class Integer
References a non-decimal number.

class Float
References a decimal number.

class String
References a text type.

class Json
References a json type, each language implements it in a different way.

class Pair(K, V)
References a combination of key-value types stored together as a pair.

6

Parameters

• K – Key type.

• V – Value type.

class List(T)
References a ordered collection.

Parameters T – Element type.

class Map(K, V)
References a mapping between a key and a value.

Parameters

• K – Key type.

• V – Value type.

class Iterable(T)
References a collection capable of returning its members one at a time.

Parameters T – Element type.

2.2 Driver

Ignis

The class Ignismanages the driver environment. Any driver function called before Ignis.start() and after Ignis.
stop() will fail.

class Ignis

static start()
Starts the driver environment. The backend module is launched as a sub-process and the other driver
functions can now be called. The function will not return until the entire backend configuration process
has been completed.

static stop()
Stops the driver environment. The Backend releases all resources and finishes its execution. The function
will not return until backend has finished.

IProperties

The class IProperties represents a persistent set of properties. Properties can be read, modified or deleted, initially
instances do not contain any properties. If a property that is not stored is read, its default value will be returned if it
exists.

class IProperties

set(key, value)
Sets a new property with the specified key.

Parameters

• key (String) – Property key.

• value (String) – Property value.

7

Returns previous value for key or an empty string.

Return type String

get(key)
Searches for the property with the specified key. If the key is not found, default value is returned.

Parameters key (String) – Property key.

Returns value for key or an empty string if it has no default value..

Return type String

rm(key)
Removes a property with the specified key and returns its current value.

Parameters key (String) – Property key.

Returns value for key or an empty string.

Return type String

contains(key)
Returns True if property with the specified key has a value or a default value.

Parameters key (String) – Property key.

Returns property with key is defined.

Return type Boolean

toMap(defaults)
Gets all properties and their values.

Parameters defaults (Boolean) – if true, unstored properties with default values are also re-
turned.

Returns all properties and their values.

Return type Map(String, String)

fromMap(map)
Sets all properties defined in the argument.

Parameters map (Map(String, String)) – A set of properties with their values.

load(path)
Sets all properties defined in the file references by the path. The file must be formatted as .properties format
where each line stores a property as key=value or key:value format.

Parameters path (String) – File path.

Raises IDriverException – An error is generated if the file does not exist, cannot be read or
has an incorrect format.

store(path)
Stores all properties defined in the file references by the path.

Parameters path (String) – File path.

Raises IDriverException – An error is generated if the file cannot be created.

clear()
Removes all properties.

8

https://en.wikipedia.org/wiki/.properties

ICluster

The class ICluster represents a group of executors containers. Containers are identical instances with the same
assigned resources, which are obtained from the properties defined in IProperties.

class ICluster(properties, name)

Parameters

• properties (IProperties) – Set of properties that will be used to configure the execution
environment. Future modifications to the properties will have no effect.

• name (String) – (Optional) Gives a name to the ICluster, it will be used to identify the
ICluster in the job logs and also in the Scheduler, if it supports it.

start()
By default, the cluster will only be started when the first computation is to be performed. This function
allows you to force their creation and eliminate the time associated with requesting and granting resources.
It must be used to perform performance measurements on the platform.

destroy()
Destroys the current running environment and frees all resources associated with it. Future executions will
have to recreate the environment from scratch.

setName(name)
Sets or changes the name associated with the ICluster. The new name will only affect the ICluster log
itself and future tasks created. The Scheduler and the existing tasks will keep the name used during their
creation.

Parameters name (String) – New name.

execute(args)
Runs a command on all containers associated with the ICluster. This function does not trigger the creation
of the ICluster, it will only be executed if the environment has already been created previously, otherwise
the function will be registered to be invoked immediately after its creation.

Parameters args (List(String)) – Command and its arguments.

executeScript(script)
Like ICluster.execute() but argument is a shell script instead of single command.

Parameters script (String) – Linux Shell script.

sendFile(source, target)
Sends a file to all containers associated with the ICluster. This function does not trigger the creation of
the ICluster, the file only be sent if the environment has already been created previously, otherwise the
function will be registered to be invoked immediately after its creation.

Parameters

• source (String) – Source path in driver container.

• target (String) – Target path in each executor container.

sendCompressedFile(source, target)
Like ICluster.sendFile() but file is extracted once it has been sent. Supported formats are: .tar, .
tar.bz2, .tar.bz, .tar.xz, .tbz2, .tgz, .gz, .bz2, .xz, .zip, .Z. Note that .rar is also supported,
but its license requires it to be installed by the user.

9

ISource

The class ISource is an auxiliary class used by meta-functions in the driver. A meta-function is a function that defines
part of its implementation using another function that is passed as a parameter. The way in which the function is defined
depends on each implementation.

Typically the following format should be available:

1. Ignis path: String representation consisting of a file path and a class. The file indicates where the code is stored
and the class defines the function to be executed. Format is as follows: path:class

2. Name: Defines only the name of the function, it is also defined as a string and differs from the previous case
because it does not contain : separator.

3. Source Code: Function is defined using the syntax of the executor’s source code. Executor will recognize it as
source code and compile it if necessary.

4. Lambda: The function is defined in the driver code and then sent as bytes to the executor. In this case driver and
executor must be programmed in the same programming language and it must support serialization of executable
code.

class ISource(function, native)

Parameters

• function – Overloaded argument to accept all possible function definitions supported in
each implementation.

• native (Boolean) – (Optional) Type of serialization used to send parameters. If true, the
driver language’s own serialization will be used, if and only if the executor also has the same
language. Otherwise the multi-language serialization will always be used.

addParam(name, value)
Defines a parameter associated with the function. The value of the parameter can be obtained by the get
function during its execution.

Parameters

• name (String) – Parameter name.

• value – Value to be stored in the parameter, can have any type.

Returns This ISource instance.

Return type ISource

IWorker

The class IWorker represents a group of processes of the same programming language. There is at least one process
in each of the ICluster containers where the worker is created, and all containers have the same number of executor
processes.

class IWorker(cluster, type, name, cores, instances)

Parameters

• cluster (ICluster) – ICluster where the executors will be created.

• type (String) – Name of the worker to be used, the names of the workers are associated
to the programming language they execute. The available workers are associated with the
image used to create the class ICluster.

10

• name (String) – (Optional) Like ICluster a worker can have a name that identifies it in
the job log.

• cores (Integer) – (Optional) Number of cores associated to each executor, by default each
executor uses all available cores inside the container.

• instances (Integer) – (Optional) Number of executors to be launched in each container,
by default only one is launched.

start()
By default, the worker will only be started when the first computation is to be performed. This function
allows you to force their creation.

destroy()
Destroys all processes associated with the worker. Future executions will have to start the processes again.
Destroying the executors means deleting cached elements in memory, only disk cache will be kept.

getCluster()
gets ICluster where worker is created.

setName(name)
Sets or changes the name associated with the IWorker. The new name will only affect the worker log itself
and future tasks created. Existing tasks will keep the name used during their creation.

Parameters name (String) – New name.

parallelize(data, partitions, src, native)
Creates a IDataFrame from an existing collection present in the driver. The elements present in the col-
lection are distributed to the executors for a parallel processing.

Parameters

• data (Iterable(T)) – A collection object present in the driver.

• partitions (Integer) – How many partitions the collection elements will be divided.
For optimal processing, there should be at least one partition for all cores on each of the
executors.

• src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary
between languages. Must implement at least IBeforeFunction interface.

• native (Boolean) – (Optional) Type of serialization used to send data. If true, the driver
language’s own serialization will be used, if and only if the executor also has the same
language. Otherwise the multi-language serialization will always be used.

Returns A parallel collection with the same type of data elements.

Return type IDataFrame(T)

importDataFrame(data, src)
Imports a parallel collection from another worker. The number of partitions will be the same as in the
original worker.

Parameters

• data (IDataFrame(T)) – Parallel collection of source data.

• src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary
between languages. Must implement at least IBeforeFunction interface.

Returns A parallel collection with data elements.

Return type IDataFrame(T)

11

textFile(path, minPartitions)
Creates a parallel collection by splitting a text file to create at least minPartitions partitions.

Parameters

• path (String) – File path.

• minPartitions (Integer) – Minimal number of partitions.

Returns A parallel collection of strings.

Return type IDataFrame(String)

Raises IDriverException – An error is generated if the file does not exist or cannot be read.

plainFile(path, minPartitions, delim)
Creates a parallel collection by splitting a file using a custom delimiter to create at least minPartitions
partitions.

Parameters

• path (String) – File path.

• minPartitions (Integer) – Minimal number of partitions. :delim String delim: A one-
character string.

Returns A parallel collection of strings.

Return type IDataFrame(String)

Raises IDriverException – An error is generated if the file does not exist or cannot be read.

partitionObjectFile(path, src)
Creates a parallel collection from binary partition files. See IDataFrame.saveAsObjectFile()

Parameters

• path (String) – File path without the .part* extension.

• src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary
between languages. Must implement at east IBeforeFunction interface.

Returns A parallel collection with type stored in the binary file.

Return type IDataFrame(T)

Raises IDriverException – An error is generated if any file do not exist or cannot be read.

partitionTextFile(path)
Creates a parallel collection from text partition files. See IDataFrame.saveAsTextFile()

Parameters path (String) – File path without the .part* extension.

Returns A parallel collection of strings.

Return type IDataFrame(String)

Raises IDriverException – An error is generated if any file do not exist or cannot be read.

partitionJsonFile(path, src, objectMapping)
Creates a parallel collection from json partition files. See IDataFrame.saveAsJsontFile()

Parameters

• path (String) – File path without the .part* extension.

• src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary
between languages. Must implement at least IBeforeFunction interface.

12

• objectMapping (Boolean) – (Optional) If true, json objects are transformed to objects.

Returns A parallel collection of mapped object, if objectMapping is true or otherwise a generic
json type is used.

Return type IDataFrame(Json) or IDataFrame(T)

Raises IDriverException – An error is generated if any file do not exist or cannot be read.

loadLibrary(path)
Loads a library of functions in the executor processes. Functions may be invoked using only their name in
any ISource. Library type depends on the programming language of executor.

The library can be defined in two ways:

1. Path to a library file. Library must be compiled if the language requires it.

2. Source code in plain text, executor will take care of compiling if necessary. This allows you to create
functions dynamically from the driver.

Parameters path (String) – Library path or Source code.

Raises IDriverException – An error is generated if libreary does not exist or cannot be read.

execute(src)
Runs a function in the executors.

Parameters src (IIVoidFunction0 or ISource) – Function to be executed.

executeTo(src)
Runs a function in the executors and generates a parallel collection.

Parameters src (IFunction0 or ISource) – Function to be executed.

Returns A parallel collection created with the elements returned by the function.

Return type IDataFrame(T)

call(src, data)
Runs a function that has been previously loaded by IWorker.loadLibrary(). Values returned by the
function will generate a parallel collection. Note, this function is designed to execute functions in format
name, it does not allow to use the other formats.

Parameters

• src (IFunction or IFunction0 or ISource) – Function name and its arguments. It
must implement IFunction interface if data is supplied or IFunction0 otherwise.

• data (IDataFrame(T)) – (Optional) A parallel collection of elements to be processed by
the src function.

Returns A parallel collection created with the elements returned by src function.

Return type IDataFrame(T)

voidCall(src, data)
Runs a function that has been previously loaded by IWorker.loadLibrary(). Like IWorker.call()
but with no return.

Parameters

• src (IVoidFunction or IVoidFunction0 or ISource) – Function name and its
arguments. It must implement IVoidFunction interface if data is supplied or
IVoidFunction0 otherwise. Note, this function is designed to execute functions in format
name, it does not allow to use the other formats.

13

• data (IDataFrame(T)) – (Optional) A parallel collection of elements to be processed by
the src function.

IDataFrame

The class IDataFrame represents a parallel collection of elements distributed among the worker executors. All func-
tions defined within this class process the elements in a parallel and distributed way.

class IDataFrame(T)

class T
Represents the type associated with the parallel collection. Dynamic languages do not have to make it
visible to the user, it is the input value type for most of the functions defined in IDataFrame.

setName(name)
Sets or changes the name associated with the IDataFrame. The new name will affect only this IDataFrame
and future tasks created from it.

Parameters name (String) – New name.

persist(cacheLevel)
Sets a cache level for elements so that it only needs to be computed once.

Parameters cacheLevel (ICacheLevel) – level of cache.

cache(cacheLevel)
Sets a cache level ICacheLevel.PRESERVE for elements so that it only needs to be computed once.

unpersist()
Elements cache is disabled. Alias for IDataFrame.uncahe.

uncahe()
Elements cache is disabled. Alias for IDataFrame.unpersist.

partitions()
Gets the number of partitions.

Returns Number of partitions.

Return type Integer.

saveAsObjectFile(path, compression)
Saves elements as binary files.

Parameters

• path (String) – path to store the data.

• compression (Integer) – compresion level (0-9).

Raises IDriverException – An error is generated if files exists or cannot be write.

saveAsTextFile(path)
Saves elements as text files.

Parameters path (String) – path to store the data.

Raises IDriverException – An error is generated if files exists or cannot be write.

saveAsJsonFile(path, pretty)
Saves elements as json files.

Parameters

14

• path (String) – path to store the data.

• pretty (Boolean) – uses an ident format instead of compact.

Raises IDriverException – An error is generated if files exists or cannot be write.

repartition(numPartitions, preserveOrdering, global)
Creates a new Dataframe with a fixes number of partitions.

Parameters

• numPartitions (Integer) – number of partitions.

• preserveOrdering (Boolean) – The order of the elements does not change.

• global (Boolean) – Elements are balanced between different executors. If false, Elements
are only balanced within each executor.

Returns A Dataframe with numPartitions.

Return type IDataFrame(T)

partitionByRandom(numPartitions, seed)
Creates a new Dataframe with a fixes number of partitions. Elements are randomly distributed among the
executors.

Parameters numPartitions (Integer) – number of partitions. :param Integer seed: Initializes
the random number generator.

Returns A Dataframe with numPartitions.

Return type IDataFrame(T)

partitionByHash(numPartitions)
Creates a new Dataframe with a fixes number of partitions. Elements are distributed using a hash function
among the executors.

Parameters numPartitions (Integer) – number of partitions.

Returns A Dataframe with numPartitions.

Return type IDataFrame(T)

partitionBy(src, numPartitions)
Creates a new Dataframe with a fixes number of partitions. Elements are distributed using a custom function
among the executors. The same function return assigns the same partition.

Parameters

• src (IFunction(T, Integer) or ISource.) – Function argument.

• numPartitions (Integer) – number of partitions.

Returns A Dataframe with numPartitions.

Return type IDataFrame(T)

map(src)
Performs a map operation.

Parameters src (IFunction(T, R) or ISource.) – Function argument.

Returns A Dataframe with result elements.

Return type IDataFrame(R)

15

mapWithIndex(src)
Performs a map operation. Like IDataFrame.map but global index of the element is available as the first
argument of the function.

Parameters src (IFunction2(Integer, T, R) or ISource.) – Function argument.

Returns A Dataframe with result elements.

Return type IDataFrame(R)

filter(src)
Performs a filter operation. Only items that return True will be retained.

Parameters src (IFunction(T, Boolean) or ISource.) – Function argument.

Returns A Dataframe with result elements.

Return type IDataFrame(T)

flatmap(src)
Performs a flatmap operation. Like IDataFrame.map but each element can generate any number of results.

Parameters src (IFunction(T, Iterable(R)) or ISource.) – Function argument.

Returns A Dataframe with result elements.

Return type IDataFrame(R)

keyBy(src)
Assigns each element a key with the return of the function.

Parameters src (IFunction(T, R) or ISource.) – Function argument.

Returns A Dataframe of pairs with result elements.

Return type IPairDataFrame(R, T)

mapPartitions(src, preservesPartitioning)
Performs a specialized map that is called only once for each partition, elements can be accessed using an
iterator.

Parameters

• src (IFunction(IReadIterator(T), Iterable(R)) or ISource.) – Function ar-
gument.

• preservesPartitioning (Boolean) – Preserves partitioning

Returns A Dataframe with result elements.

Return type IDataFrame(R)

mapPartitionsWithIndex(src, preservesPartitioning)
Performs a specialized map that is called only once for each partition, elements can be accessed using
an iterator. Like IDataFrame.mapPartitions but global index of the partition is available as the first
argument of the function.

Parameters

• src (IFunction2(Integer, IReadIterator(T), Iterable(R)) or ISource.)
– Function argument.

• preservesPartitioning (Boolean) – Preserves partitioning

Returns A Dataframe with result elements.

Return type IDataFrame(R)

16

mapExecutor(src)
Performs a specialized map that is called only once for each executor, elements can be accessed using a
list of lists where first list represents each partition. Function argument can be modified to add or remove
values, if you want to generate other value type use :class: IDataFrame.mapExecutorTo.

Parameters src (IVoidFunction(List(List(T))) or ISource.) – Function argument.

Returns A Dataframe with result elements.

Return type IDataFrame(R)

mapExecutorTo(src)
Performs a specialized map that is called only once for each executor, elements can be accessed using a
list of lists where first list represents each partition. A new list of lists must be returned to generate new
partitions.

Parameters src (IFunction(List(List(T)), List(List(R))) or ISource.) – Func-
tion argument.

Returns A Dataframe with result elements.

Return type IDataFrame(R)

groupBy(src, numPartitions)
Groups elements that share the same key, which is obtained from the return of the function.

Parameters

• src (IFunction(T, R)) or ISource.) – Function argument.

• numPartitions (Integer) – (Optional) Number of resulting partitions.

Returns A Dataframe of pairs with result elements.

Return type IPairDataFrame(R, List(T))

sort(ascending, numPartitions)
Sort the elements using their natural order.

Parameters

• ascending (Boolean) – Allows you to choose between ascending and descending order.

• numPartitions (Integer) – (Optional) Number of resulting partitions.

Returns A Dataframe with result elements.

Return type IDataFrame(T)

sortBy(src, ascending, numPartitions)
Sort the elements using a custom function, that checks if the first argument is less than the second.

Parameters

• src (IFunction2(T, T, Boolean)) or ISource.) – Function argument.

• ascending (Boolean) – Allows you to choose between ascending and descending order.

• numPartitions (Integer) – (Optional) Number of resulting partitions.

Returns A Dataframe with result elements.

Return type IDataFrame(T)

union(other, preserveOrder, src)
Merges elements of two dataframes.

Parameters

17

• other (IDataFrame(T)) – other dataframe.

• preserveOrder (Boolean) – If true, the second dataframe is concatenated to the first,
otherwise they are mixed.

• src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary
between languages. Must implement at east IBeforeFunction interface.

Returns A Dataframe with result elements of the two dataframes.

Return type IDataFrame(T)

distinct(numPartitions, src)
Duplicate elements are eliminated.

Parameters

• numPartitions (Integer) – Number of resulting partitions.

• src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary
between languages. Must implement at east IBeforeFunction interface.

Returns A Dataframe with result elements.

Return type IDataFrame(T)

reduce(src)
Accumulate the elements using a custom function, which must be associative and commutative. Like
IDataFrame.treeReduce but final accumulation is performed in a single executor.

Parameters src (IFunction2(T, T, T)) or ISource.) – Function argument.

Returns Element resulting from accumulation.

Return type T

treeReduce(src)
Accumulate the elements using a custom function, which must be associative and commutative. Like
IDataFrame.reduce but final accumulation is performed in parallel using multiple executors.

Parameters src (IFunction2(T, T, T)) or ISource.) – Function argument.

Returns Element resulting from accumulation.

Return type T

collect()
Retrieve all the elements.

Returns All the elements.

Return type List(T)

aggregate(zero, seqOp, combOp)
Accumulate the elements using two functions, which must be associative and commutative. Like :class:
IDataFrame.treeAggregate` but final accumulation is performed in a single executor.

Parameters

• zero (IFunction0(R)) or ISource.) – Function argument to generate initial value of
target type.

• seqOp (IFunction2(T, R, R)) or ISource.) – Function argument to accumulate
the elements of each partition.

• combOp (IFunction2(R, R, R)) or ISource.) – Function argument to accumulate
the results of all partitions .

18

Returns Element resulting from accumulation.

Return type R

treeAggregate(zero, seqOp, combOp)
Accumulate the elements using two functions, which must be associative and commutative. Like
IDataFrame.aggregate but final accumulation is performed in parallel using multiple executors.

Parameters

• zero (IFunction0(R)) or ISource.) – Function argument to generate initial value of
target type.

• seqOp (IFunction2(T, R, R)) or ISource.) – Function argument to accumulate
the elements of each partition.

• combOp (IFunction2(R, R, R)) or ISource.) – Function argument to accumulate
the results of all partitions .

Returns Element resulting from accumulation.

Return type R

fold(zero, src)
Accumulate the elements using a initial value and custom function, which must be associative and commu-
tative. Like IDataFrame.treeFold but final accumulation is performed in a single executor.

Parameters

• zero (IFunction0(R)) or ISource.) – Function argument to generate initial value of
target type.

• src (IFunction2(T, T, T)) or ISource.) – Function argument to accumulate.

Returns Element resulting from accumulation.

Return type T

treeFold(zero, src)
Accumulate the elements using a initial value and custom function, which must be associative and com-
mutative. Like IDataFrame.treeFold but final accumulation is performed in parallel using multiple
executors.

Parameters

• zero (IFunction0(R)) or ISource.) – Function argument to generate initial value of
target type.

• src (IFunction2(T, T, T)) or ISource.) – Function argument to accumulate.

Returns Element resulting from accumulation.

Return type T

take(num)
Retrieves the first num elements.

Parameters num (Integer) – Number of elements.

Returns First num elements.

Return type List(T)

foreach(src)
Calls a custom function once for each element.

Parameters src (IVoidFunction(T) or ISource.) – Function argument.

19

foreachPartition(src)
Calls a custom function once for each partition, elements can be accessed using an iterator.

Parameters src (IVoidFunction(IReadIterator(T)) or ISource.) – Function argu-
ment.

foreachExecutor(src)
Calls a custom function once for each executor, elements can be accessed using a list of lists where first list
represents each partition.

Parameters src (IVoidFunction(List(List(T))) or ISource.) – Function argument.

top(num, cmp)
Retrieves the first num elements in descending order. A custom function can be used to checks if the first
argument is less than the second

Parameters

• num (Integer) – Number of elements.

• cmp (IFunction2(T, T, Boolean)) or ISource.) – (Optional) Comparator to be
used instead of the natural order.

Returns First num elements.

Return type List(T)

takeOrdered(num, cmp)
Retrieves the first num elements in ascending order. A custom function can be used to checks if the first
argument is less than the second

Parameters

• num (Integer) – Number of elements.

• cmp (IFunction2(T, T, Boolean)) or ISource.) – (Optional) Comparator to be
used instead of the natural order.

Returns First num elements.

Return type List(T)

sample(withReplacement, fraction, seed)
Generates a random sample records from the original elements.

Parameters

• withReplacement (Boolean) – An element can be selected more than once.

• fraction (Float) – Percentage of the sample.

• seed (Integer) – Initializes the random number generator.

Returns A Dataframe with result elements.

Return type IDataFrame(T)

takeSample(withReplacement, num, seed)
Generates and Retrieves a random sample of num records from the original elements.

Parameters

• withReplacement (Boolean) – An element can be selected more than once.

• num (Integer) – Number of elements.

• seed (Integer) – Initializes the random number generator.

20

Returns A Dataframe with result elements.

Return type IDataFrame(T)

count()
Count the elements.

Returns Number of elements.

Return type Integer

max(cmp)
Retrieves the element with the maximum value. A custom function can be used to checks if the first argu-
ment is less than the second. Like Dataframe.top with num=1

Parameters

• num (Integer) – Number of elements.

• cmp (IFunction2(T, T, Boolean)) or ISource.) – (Optional) Comparator to be
used instead of the natural order.

Returns Element with the maximum value.

Return type T

min(cmp)
Retrieves the element with the minimal value. A custom function can be used to checks if the first argument
is less than the second. Like Dataframe.takeOrdered with num=1

Parameters

• num (Integer) – Number of elements.

• cmp (IFunction2(T, T, Boolean)) or ISource .) – (Optional) Comparator to be
used instead of the natural order.

Returns Element with the minimal value.

Return type T

toPair()
Converts IDataFrame to IPairDataFrame when IDataFrame.T is a Pair of IPairDataFrame.K and
IPairDataFrame.V .

Returns A Dataframe of pairs

Return type IPairDataFrame(K , V)

class IPairDataFrame(K, V)
Extends IDataFrame funtionality when IDataFrame.T is a Pair

class K
Represents the value type associated with the parallel collection. Dynamic languages do not have to make
it visible to the user, it is the key input value type for most of the functions defined in IPairDataFrame.

class V
Represents the value type associated with the parallel collection. Dynamic languages do not have to make
it visible to the user, it is the value input value type for most of the functions defined in IPairDataFrame.

join(other, preserveOrder, numPartitions, src)
Joins an element of this collection with an element of other that share the same key.

Parameters

• other (IPairDataFrame(K, V)) – other dataframe.

21

• numPartitions (Integer) – Number of resulting partitions.

• src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary
between languages. Must implement at east IBeforeFunction interface.

Returns A Dataframe of pairs with result elements.

Return type IPairDataFrame(K , Pair(V , V))

flatMapValues(src)
Performs a map function only on the values while preserving the key. Like IPairDataFrame.mapValues
but each element can generate any number of results, key is duplicated or deleted if necessary.

Parameters src (IFunction(V, R) or ISource.) – Function argument.

Returns A Dataframe of pairs with result elements.

Return type IPairDataFrame(K , R)

mapValues(src)
Performs a map function only on the values while preserving the key.

Parameters src (IFunction(V, R) or ISource.) – Function argument.

Returns A Dataframe of pairs with result elements.

Return type IPairDataFrame(K , R)

groupByKey(numPartitions, src)
Groups elements that share the same key.

Parameters

• numPartitions (Integer) – Number of resulting partitions.

• src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary
between languages. Must implement at east IBeforeFunction interface.

Returns A Dataframe of pairs with result elements.

Return type IPairDataFrame(K , List(V))

reduceByKey(src, numPartitions, localReduce)
Accumulate the values that share the same key using a custom function, which must be associative and
commutative.

Parameters

• src (IFunction2(V, V, V)) or ISource.) – Function argument.

• numPartitions (Integer) – Number of resulting partitions.

• localReduce (Boolean) – Accumulate the values that share the same key in a executor
before global accumulation. Reduces the size of the exchange if there are duplicated keys
in multiple partitions.

Returns A Dataframe of pairs with result elements.

Return type IPairDataFrame(K , V)

aggregateByKey(zero, seqOp, combOp, numPartitions)
Accumulate the values that share the same key using two functions, which must be associative and com-
mutative.

Parameters

22

• zero (IFunction0(R)) or ISource.) – Function argument to generate initial value of
target type.

• seqOp (IFunction2(V, R, R)) or ISource.) – Function argument to accumulate
the values that share the same key of each partition.

• combOp (IFunction2(R, R, R)) or ISource.) – Function argument to accumulate
the results that share the same key of all partitions .

• numPartitions (Integer) – Number of resulting partitions.

Returns A Dataframe of pairs with result elements.

Return type IPairDataFrame(K , V)

foldByKey(zero, src, numPartitions, localFold)
Accumulate the values that share the same key using a initial value and custom function, which must be
associative and commutative.

Parameters

• zero (IFunction0(R)) or ISource.) – Function argument to generate initial value of
target type.

• src (IFunction2(V, V, V)) or ISource.) – Function argument to accumulate.

• numPartitions (Integer) – Number of resulting partitions.

• localFold (Boolean) – Accumulate the values that share the same key in a executor
before global accumulation. Reduces the size of the exchange if there are duplicated keys
in multiple partitions.

Returns A Dataframe of pairs with result elements.

Return type IPairDataFrame(K , V)

sortByKey(ascending, numPartitions, src)
Sort the keys using their natural order.

Parameters

• ascending (Boolean) – Allows you to choose between ascending and descending order.

• numPartitions (Integer) – Number of resulting partitions.

• src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary
between languages. Must implement at east IBeforeFunction interface.

Returns A Dataframe of pairs with result elements.

Return type IPairDataFrame(K , V)

keys()
Retrieve unique keys.

Returns The unique keys.

Return type List(K)

values()
Retrieve unique values.

Returns The unique values.

Return type List(V)

23

sampleByKey(withReplacement, fractions, seed, native)
Generates a random sample records from the values that share the same key.

Parameters

• withReplacement (Boolean) – An element can be selected more than once.

• fraction (Map(K, Float)) – Percentage of the sample by key. Absences are taken as
zero.

• seed (Integer) – Initializes the random number generator.

• native (Boolean) – (Optional) sends fractions with native serialization.

Returns A Dataframe with result elements.

Return type IDataFrame(T)

countByKey()
Count unique keys.

Returns Number unique of values.

Return type Integer

countByValue()
Count unique keys.

Returns Number unique of values.

Return type Integer

class ICacheLevel

NO_CACHE: Integer = 0
Elements cache is disabled.

PRESERVE: Integer = 1
Elements will be cached in the same storage in which it is stored.

MEMORY: Integer = 2
Elements will be cached on memory storage.

RAW_MEMORY: Integer = 3
Elements will be cached on raw memory storage.

DISK: Integer = 4
Elements will be cached on disk storage.

IDriverException

The class IDriverException represents an execution error. Exceptions are defined together with the function that
generates them, but they are actually thrown by the function that causes the execution.

class IDriverException

24

2.3 Executor

class IContext
The executor context allows the API functions to interact with the rest of the IgnisHPC system.

cores()

Returns Number of cores assigned to the executor.
Return type Integer

executors()

Returns Number of executors.
Return type Integer

executorId()

Returns Unique identifier of the executor, a number greater than or equal to zero and
less than the number of executors.

Return type Integer

threadId()

Returns Unique identifier of the current thread, a number greater than or equal to zero and less
than the than the number of cores.

Return type Integer

mpiGroup()

Returns Returns the mpi group of the executors.

props()

Returns Driver IProperties as Map object.

Return type Map(String, String)

vars()
(This function may vary depending on the implementation.)

Returns Variables sent by ISource.addParam as Map object.

Return type Map(String, Any)

class IReadIterator
Transverse through elements of a partition.

hasNext()

Returns True if elements remain

Return type Boolean

next()

Returns Next element.

class IBeforeFunction

25

before(context)

Parameters context (IContext) – The executor context.

class IVoidFunction0

before(context)

Parameters context (IContext) – The executor context.

call(context)

Parameters context (IContext) – The executor context.

after(context)

Parameters context (IContext) – The executor context.

class IVoidFunction

before(context)

Parameters context (IContext) – The executor context.

call(context, v)

Parameters

• context (IContext) – The executor context.

• v – Argument

after(context)

Parameters context (IContext) – The executor context.

class IVoidFunction2

before(context)

Parameters context (IContext) – The executor context.

call(context, v1, v2)

Parameters

• context (IContext) – The executor context.

• v1 – Argument 1

• v2 – Argument 2

after(context)

26

Parameters context (IContext) – The executor context.

class IFunction0

before(context)

Parameters context (IContext) – The executor context.

call(context)

Parameters context (IContext) – The executor context.

Returns This function must return a value.

after(context)

Parameters context (IContext) – The executor context.

class IFunction

before(context)

Parameters context (IContext) – The executor context.

call(context, v)

Parameters

• context (IContext) – The executor context.

• v – Argument

Returns This function must return a value.

after(context)

Parameters context (IContext) – The executor context.

class IFunction2

before(context)

Parameters context (IContext) – The executor context.

call(context, v1, v2)

Parameters

• context (IContext) – The executor context.

• v1 – Argument 1

• v2 – Argument 2

Returns This function must return a value.

27

after(context)

Parameters context (IContext) – The executor context.

3 Docker Images

3.1 Background

IgnisHPC is fully containerized, these can be extended to create custom runtime environments and isolate incompatible
modules. For those unfamiliar with containers, containers are running instances of an image, which is an immutable
environment that serves as the starting point when the container is started.

IgnisHPC images are organized according to a hierarchy, shown in the figure above, which allows us to extend and
create new modules easily and simply. The images have an associated namespace that groups all the hierarchy of
images, by default it is ignishpc but an user can create his own. Although all images have an important role to play,
in most cases, users should only familiarize themselves with the core images. A core container stores the IgnisHPC
implementation for a given language as well as its dependencies. Images without an associated IgnisHPC module are
stored in the Dockerfiles repository.

Note that only images belonging to the IgnisHPC architecture are covered, images of external dependencies are optional
and are outside the scope of this document.

3.2 Details

Base

Base, as its name indicates, is the base image of IgnisHPC. Base is created as an extension of the official ubuntu image
whose version is associated with the IgnisHPC version. This image only defines environment variables and creates the
IgnisHPC folder structure, which can be customized and modify the other images easily.

Builder

Builder extends from base and installs the most common dependencies used in compilation environments such as
the GNU Compiler Collection, the GNU Debugger and other libraries and development tools needed for software
compilation. This image and its derivatives are only used for software construction, they are never used for code
execution.

common-Builder

In this image the dependencies common to the whole system are stored and compiled. MPI is compiled and modified
from sources in this image and the thrift library is stored so that the cores do not have to download it.

28

driver-Builder

This image is associated with the driver environment build, which compiles the source code and defines an installation
script to install it in the driver runtime environment. This image belongs to the Backend module and both are stored in
the same repository.

executor-Builder

This image is associated with the executor environment build, there is no module associated to the executor, so only
the installation script is created to install it in the executor runtime environment and compiles any dependencies if
necessary.

common

Common execution environment for the execution of all IgnisHPC modules, this image extends from base to inherit the
environment configuration. The image build depends on driver-builder and exectutor-builder, from which it obtains the
dependencies and installation scripts for a driver and executor environment. Neither the dependencies nor the runtime
environments are installed, they are just stored.

core-builder

The programming languages supported by IgnisHPC are known as cores, which consist of a driver code and an executor
code. Each core has a builder image used for the compilation of sources and its dependencies and for the creation of an
installation script. The name of the image must be the name of the core with the suffix -builder and must be stored
in the same repository as the core source code.

core images

Core images are the execution environments used by users to run their codes in IgnisHPC. The core images are three
and are generated automatically from their corresponding builder extending the common image.

1. It has the same name as the core with suffix -driver, it has the driver environment installed.

2. It has the same name as the core with suffix -executor, it has the executor environment installed.

3. It has the same name as the core, it has the driver and executor environment installed.

The core images have the core and its dependencies installed but can only be used as a driver or executor if its environ-
ment is installed.

core helper images

In some cases it is possible that a core may need an additional image. For example, compiled languages may define
a -compiler image to facilitate the compilation process. These images are stored in the source code repository and
should be prefixed with the core name to identify them.

29

full

A full runtime Image, like the cores, is generated automatically. This image has the enviroment driver, the enviroment
executor and all available cores installed. This is the default image for the executors when no image is selected.

submitter

This image is associated with the IgnisHPC job launch, with are launched using the ignis-submit script. The submiter
module is implemented together with the backend module, so both are compiled in the driver-builder and the image
is stored in the backend repository.

4 Properties

IgnisHPC properties control most of the application settings and are configured separately for each application. Prop-
erties can be defined dynamically in the driver code, in the submitter script or as an environment variable. Default
values are stored in both cases in /opt/ignis/etc/ignis.conf.

All the system variables start with the prefix ignis. They can be of different types:

• Read-Only variables: contain information about the current job (ignis.home, ignis.job.name, ignis.job.
directory, . . .)

• Driver/submitter variables: must be defined before launching the driver, any later modification will have no effect
on the system (ignis.driver.image, ignis.driver.port, ignis.driver.cores, . . .)

• Executors variables: can be defined by all the available methods. Once the execution environment is created,
modifications will have no effect (ignis.executor.cores, ignis.partition.type, ignis.modules.io.
compression, . . .)

4.1 How to set properties?

Driver code

Driver has a Properties object available that allows users to read and write properties. The default values can be
overwritten but will recover their value if the property is deleted.

See the driver section for more details.

Enviroment variable

Driver and submitter scan the environment variables for properties at startup. Environment variables starting with
IGNIS_ will be treated as properties. The variable names will be converted to lowercase and the _ will be converted
to .. For example, IGNIS_FOO_BAR will be stored as ignis.foo.bar, whose value will remain unchanged.

30

Submitter script

The submitter sets the properties values using the -p or --properties parameter when a job is launched.

See submitter section for more details.

File

Default values are stored in /opt/ignis/etc/ignis.conf using Java Properties with a key=value format.

Mixed definition

In case of multiple definitions of the same variable, the following priority list will be used:

1. Driver Properties Object (highest priority)

2. Driver Container enviroment variable

3. Submitter script argument

4. Submitter Container enviroment variable

5. File /opt/ignis/etc/ignis.conf*

* There are two different files in the driver and submitter, and each one only stores the default values for its module.
Note that IgnisHPC does not define any default value outside the configuration files, which allows users to know the
values of all the system variables. Therefore, values can be modified but never deleted.

4.2 Property list

Base Properties

Name Type De-
fault

Context Description

ignis.debug Boolean False All Enables debugging messages.
ignis.home Path auto Driver Ex-

ecutor
Path where IgnisHPC is installed, IgnisHPC images set this
value to /opt/ignis.

ignis.options Raw auto Driver Raw value used by the submitter to send options to the driver.
ig-
nis.working.directory

Path auto Driver Ex-
ecutor

Working directory of the current Job, it is used to resolve all
relative paths.

31

Job Properties

Name Type De-
fault

Con-
text

Description

ig-
nis.job.id

String auto Driver Job identifier, generated and used by the scheduler.

ig-
nis.job.name

String auto Driver Job name, can be sent as a submitter parameter, otherwise it will be generated
automatically. The final job name may vary depending on the scheduler used.

ig-
nis.job.directory

Path auto Ex-
ecu-
tor

Directory where the job data is stored, it is generated as a subdirectory of the
working directory.

ig-
nis.job.worker

In-
te-
ger

auto Ex-
ecu-
tor

Identifies the worker whose instance is the executor.

Distributed Filesystem (DFS) Properties

Name Type Default Context Description
ignis.dfs.id String auto Driver DFS identifier, it identifies DFS in the scheduler.
ignis.dfs.home Path auto Driver Executor Directory where the DFS is mounted on.

Scheduler Properties

Name Type De-
fault

Con-
text

Description

ignis.scheduler.url URL[] auto Driver One or more Scheduler API URL, syntax is Scheduler-
dependent.

ignis.scheduler.type String auto Driver Scheduler implementation name. See Scheduler section for
value names.

ignis.scheduler.dns String[] auto Driver Hostnames to resolve in the container network.
ig-
nis.scheduler.param.{name}

String Driver It sets <name> parameter for the Scheduler, each Scheduler
has its own parameters.

32

Driver Properties

Name Type De-
fault

Context Description

ignis.driver.image String empty Driver Driver: container image
ignis.driver.cores In-

terger
1 Driver Driver: number of cores

ig-
nis.driver.memory

String 1GB Driver Driver: memory limit in Bytes, might use prefixes (K, M, G, . . .)
or (Ki, Mi, Gi, . . .).

ig-
nis.driver.rpc.port

Port 4000 Driver Backend service listening port.

ig-
nis.driver.rpc.compression

In-
te-
ger

6 Driver Backend service RPC zlib compression level. (0-9)

ig-
nis.driver.swappiness

In-
te-
ger

empty Driver Driver: Container swappiness rate. (0-100)

ignis.driver.pool In-
te-
ger

8 Driver Minimum number of workers on standby when the Backend is
idle.

ig-
nis.driver.port.{tcp|udp}.
{cport}

Port Driver Driver: exposes a container port to a host port. Value 0 generates
a random host port.

ig-
nis.driver.ports.{tcp|udp}

In-
te-
ger

Driver Driver: exposes a specific number of random ports to the host,
ports are exposed to the same value on host .

ig-
nis.driver.bind.{cpath}

Path Driver Driver: binds a container path cpath to a host path. Add ‘:ro’ for
read-only.

ig-
nis.driver.volume.{cpath}

String Driver Driver: Creates a volume in the path with value size in Bytes,
might use prefixes (K, M, G, . . .) or (Ki, Mi, Gi, . . .).

ignis.driver.hosts String[]empty Driver Driver: the container must be launched on one of the hosts in
order of preference.

ig-
nis.driver.env.{name}

String empty Driver Driver: creates an environment variable in the container.

ig-
nis.driver.public.key

String auto Driver SSH tunnel public key.

ig-
nis.driver.private.key

String auto Driver
Executor

SSH tunnel private key.

ig-
nis.driver.healthcheck.port

String 1963 Driver Backend healthcheck listening port.

ig-
nis.driver.healthcheck.url

String auto Driver
Executor

Backend healthcheck URL.

ig-
nis.driver.healthcheck.
interval

In-
te-
ger

60 Driver
Executor

How often the driver is checked to see if it is still alive.

ig-
nis.driver.healthcheck.
timeout

In-
te-
ger

20 Driver
Executor

Backend healthcheck response timeout.

ig-
nis.driver.healthcheck.
retries

In-
te-
ger

5 Driver
Executor

Number of healthcheck failures before aborting.

33

34

Executor Properties

Name Type De-
fault

Con-
text

Description

ig-
nis.executor.instances

In-
te-
ger

1 Ex-
ecu-
tor

Number of executors.

ig-
nis.executor.attempts

In-
te-
ger

2 Ex-
ecu-
tor

Number of execution attempts before failure.

ignis.executor.image String ig-
nishpc
/full

Ex-
ecu-
tor

Executor: container image.

ignis.executor.cores In-
terger

1 Ex-
ecu-
tor

Executor: number of cores.

ig-
nis.executor.cores.single

String[]python Ex-
ecu-
tor

Executors that do not support multithreading. Threads are trans-
formed into processes.

ig-
nis.executor.memory

String 1GB Ex-
ecu-
tor

Executor: memory limit in Bytes, might use prefixes (K, M, G,
. . .) or (Ki, Mi, Gi, . . .).

ig-
nis.executor.rpc.port

Port 5000 Ex-
ecu-
tor

Executor service listening port.

ig-
nis.executor.rpc.compression

In-
te-
ger

6 Ex-
ecu-
tor

Executor service RPC zlib compression level. (0-9)

ig-
nis.executor.swappiness

In-
te-
ger

0 Ex-
ecu-
tor

Executor: container swappiness rate. (0-100)

ig-
nis.executor.isolation

BooleanTrue Ex-
ecu-
tor

Prevents different workers from running in the same container at
the same time.

ig-
nis.executor.directory

Path auto Ex-
ecu-
tor

Directory where the job data is stored, it is generated as a subdi-
rectory of job directory.

ig-
nis.executor.port.{tcp|udp}
.{cport}

Port Ex-
ecu-
tor

Executor: exposes a container port to a host port. Value 0 gener-
ates a random host port.

ignis.executor.ports.
{tcp|udp}

In-
te-
ger

Ex-
ecu-
tor

Executor: exposes a specific number of random ports to the host,
ports are exposed to the same value on host.

ig-
nis.executor.bind.{cpath}

Path Ex-
ecu-
tor

Executor: binds a container path cpath to a host path. Add ‘:ro’
to value for read-only.

ig-
nis.executor.volume.{cpath}

String Ex-
ecu-
tor

Executor: creates a volume in the path with value size in Bytes,
might use prefixes (K, M, G, . . .) or (Ki, Mi, Gi, . . .).

ignis.executor.hosts String[]empty Ex-
ecu-
tor

Executor: the container must be launched on one of the hosts in
order of preference.

ig-
nis.executor.env.{name}

String empty Ex-
ecu-
tor

Executor: creates an environment variable in the container.

35

Partition Properties

Name Type De-
fault

Con-
text

Description

ignis.partition.type String Mem-
ory

Execu-
tor

Storage type for partitions, must be Memory, RawMemory or
Disk.

ig-
nis.partition.minimal

String 128MB Execu-
tor

Minimum partition size from file.

ig-
nis.partition.compression

Inte-
ger

0 Execu-
tor

Storage zlib compresion level. Available for RawMemory and
Disk. (0-9)

ig-
nis.partition.serialization

String native Execu-
tor

Type of serialization with executors of the same language.

Transport Properties

Name Type De-
fault

Con-
text

Description

ig-
nis.transport.cores

Float 0.0 Ex-
ecu-
tor

Number of threads used to execute a transport action at the same time. If the
value is less than 1, the value will be multiplied by ignis.executor.cores.

ig-
nis.transport.compression

In-
te-
ger

0 Ex-
ecu-
tor

Transport zlib compresion level. (0-9)

ig-
nis.transport.ports

In-
te-
ger

20 Ex-
ecu-
tor

Number of ports reserved for data exchanges.

ig-
nis.transport.minimal

String 100KBEx-
ecu-
tor

Minimum size to open a data transport channel, otherwise it will be sent by
RPC.

ig-
nis.transport.element.size

String 256B Ex-
ecu-
tor

Average size per element to use as a reference when it cannot be calculated.

36

Module Properties

Name Type De-
fault

Con-
text

Description

ig-
nis.modules.io.compression

In-
te-
ger

0 Ex-
ecu-
tor

File zlib compresion level. (0-9)

ig-
nis.modules.io.cores

Float 0.0 Ex-
ecu-
tor

Number of threads used to read/write files at the same time. If the value is less
than 1, the value will be multiplied by ignis.executor.cores.

ig-
nis.transport.compression

In-
te-
ger

0 Ex-
ecu-
tor

Transport zlib compresion level. (0-9)

ig-
nis.modules.io.overwrite

BooleanFalse Ex-
ecu-
tor

Output files are overwritten if they already exist.

ig-
nis.modules.sort.samples

Float 0.001 Ex-
ecu-
tor

Sampling size in the sort algorithm. Number of samples is calculated using
this value and the number of elements. If the value is greater than 1, it will be
used as the number of samples.

ig-
nis.modules.sort.resampling

BooleanFalse Ex-
ecu-
tor

Samples from the sort algorithm are resampled for parallel processing. It is
only useful if large amounts of data are sorted or if the sample size is very
high.

ig-
nis.modules.exchange.type

String auto Ex-
ecu-
tor

Algorithm used for data exchange, can be sync or async. Any other value selects
the method that best fits.

37

Index

A
addParam() (ISource method), 10
after() (IFunction method), 27
after() (IFunction0 method), 27
after() (IFunction2 method), 27
after() (IVoidFunction method), 26
after() (IVoidFunction0 method), 26
after() (IVoidFunction2 method), 26
aggregate() (IDataFrame method), 18
aggregateByKey() (IPairDataFrame method), 22

B
before() (IBeforeFunction method), 25
before() (IFunction method), 27
before() (IFunction0 method), 27
before() (IFunction2 method), 27
before() (IVoidFunction method), 26
before() (IVoidFunction0 method), 26
before() (IVoidFunction2 method), 26
Boolean (built-in class), 6

C
cache() (IDataFrame method), 14
call() (IFunction method), 27
call() (IFunction0 method), 27
call() (IFunction2 method), 27
call() (IVoidFunction method), 26
call() (IVoidFunction0 method), 26
call() (IVoidFunction2 method), 26
call() (IWorker method), 13
clear() (IProperties method), 8
collect() (IDataFrame method), 18
contains() (IProperties method), 8
cores() (IContext method), 25
count() (IDataFrame method), 21
countByKey() (IPairDataFrame method), 24
countByValue() (IPairDataFrame method), 24

D
destroy() (ICluster method), 9
destroy() (IWorker method), 11
distinct() (IDataFrame method), 18

E
execute() (ICluster method), 9
execute() (IWorker method), 13
executeScript() (ICluster method), 9
executeTo() (IWorker method), 13
executorId() (IContext method), 25
executors() (IContext method), 25

F
filter() (IDataFrame method), 16
flatmap() (IDataFrame method), 16
flatMapValues() (IPairDataFrame method), 22
Float (built-in class), 6
fold() (IDataFrame method), 19
foldByKey() (IPairDataFrame method), 23
foreach() (IDataFrame method), 19
foreachExecutor() (IDataFrame method), 20
foreachPartition() (IDataFrame method), 19
fromMap() (IProperties method), 8

G
get() (IProperties method), 8
getCluster() (IWorker method), 11
groupBy() (IDataFrame method), 17
groupByKey() (IPairDataFrame method), 22

H
hasNext() (IReadIterator method), 25

I
IBeforeFunction (built-in class), 25
ICacheLevel (built-in class), 24
ICacheLevel.DISK (built-in variable), 24
ICacheLevel.MEMORY (built-in variable), 24
ICacheLevel.NO_CACHE (built-in variable), 24
ICacheLevel.PRESERVE (built-in variable), 24
ICacheLevel.RAW_MEMORY (built-in variable), 24
ICluster (built-in class), 9
IContext (built-in class), 25
IDataFrame (built-in class), 14
IDataFrame.T (built-in class), 14
IDriverException (built-in class), 24
IFunction (built-in class), 27
IFunction0 (built-in class), 27
IFunction2 (built-in class), 27
Ignis (built-in class), 7
importDataFrame() (IWorker method), 11
Integer (built-in class), 6
IPairDataFrame (built-in class), 21
IPairDataFrame.K (built-in class), 21
IPairDataFrame.V (built-in class), 21
IProperties (built-in class), 7
IReadIterator (built-in class), 25
ISource (built-in class), 10
Iterable (built-in class), 7
IVoidFunction (built-in class), 26
IVoidFunction0 (built-in class), 26
IVoidFunction2 (built-in class), 26

38

IWorker (built-in class), 10

J
join() (IPairDataFrame method), 21
Json (built-in class), 6

K
keyBy() (IDataFrame method), 16
keys() (IPairDataFrame method), 23

L
List (built-in class), 7
load() (IProperties method), 8
loadLibrary() (IWorker method), 13

M
Map (built-in class), 7
map() (IDataFrame method), 15
mapExecutor() (IDataFrame method), 16
mapExecutorTo() (IDataFrame method), 17
mapPartitions() (IDataFrame method), 16
mapPartitionsWithIndex() (IDataFrame method), 16
mapValues() (IPairDataFrame method), 22
mapWithIndex() (IDataFrame method), 15
max() (IDataFrame method), 21
min() (IDataFrame method), 21
mpiGroup() (IContext method), 25

N
next() (IReadIterator method), 25

P
Pair (built-in class), 6
parallelize() (IWorker method), 11
partitionBy() (IDataFrame method), 15
partitionByHash() (IDataFrame method), 15
partitionByRandom() (IDataFrame method), 15
partitionJsonFile() (IWorker method), 12
partitionObjectFile() (IWorker method), 12
partitions() (IDataFrame method), 14
partitionTextFile() (IWorker method), 12
persist() (IDataFrame method), 14
plainFile() (IWorker method), 12
props() (IContext method), 25

R
reduce() (IDataFrame method), 18
reduceByKey() (IPairDataFrame method), 22
repartition() (IDataFrame method), 15
rm() (IProperties method), 8

S
sample() (IDataFrame method), 20

sampleByKey() (IPairDataFrame method), 23
saveAsJsonFile() (IDataFrame method), 14
saveAsObjectFile() (IDataFrame method), 14
saveAsTextFile() (IDataFrame method), 14
sendCompressedFile() (ICluster method), 9
sendFile() (ICluster method), 9
set() (IProperties method), 7
setName() (ICluster method), 9
setName() (IDataFrame method), 14
setName() (IWorker method), 11
sort() (IDataFrame method), 17
sortBy() (IDataFrame method), 17
sortByKey() (IPairDataFrame method), 23
start() (ICluster method), 9
start() (Ignis static method), 7
start() (IWorker method), 11
stop() (Ignis static method), 7
store() (IProperties method), 8
String (built-in class), 6

T
take() (IDataFrame method), 19
takeOrdered() (IDataFrame method), 20
takeSample() (IDataFrame method), 20
textFile() (IWorker method), 11
threadId() (IContext method), 25
toMap() (IProperties method), 8
top() (IDataFrame method), 20
toPair() (IDataFrame method), 21
treeAggregate() (IDataFrame method), 19
treeFold() (IDataFrame method), 19
treeReduce() (IDataFrame method), 18

U
uncahe() (IDataFrame method), 14
union() (IDataFrame method), 17
unpersist() (IDataFrame method), 14

V
values() (IPairDataFrame method), 23
vars() (IContext method), 25
voidCall() (IWorker method), 13

39

	Getting Started
	Requirements
	Installation
	Creating IgnisHPC Containers
	Deploying IgnisHPC Containers
	Docker (Only local)
	Nomad
	Mesos
	Slurm

	Launching the first job
	Launching without Container

	API
	BasicType Reference
	Driver
	Ignis
	IProperties
	ICluster
	ISource
	IWorker
	IDataFrame
	IDriverException

	Executor

	Docker Images
	Background
	Details
	Base
	Builder
	common-Builder
	driver-Builder
	executor-Builder
	common
	core-builder
	core images
	core helper images
	full
	submitter

	Properties
	How to set properties?
	Driver code
	Enviroment variable
	Submitter script
	File
	Mixed definition

	Property list
	Base Properties
	Job Properties
	Distributed Filesystem (DFS) Properties
	Scheduler Properties
	Driver Properties
	Executor Properties
	Partition Properties
	Transport Properties
	Module Properties

	Index

