

IgnisHPC

[image: IgnisHPC logo]

	Authors

	César Piñeiro, Juan C. Pichel

	Affiliation

	CiTIUS [https://citius.usc.es/], Universidade de Santiago de Compostela (Spain)

	Contact

	cesaralfredo.pineiro@usc.es, juancarlos.pichel@usc.es

	Date

	Jul 13, 2022

About

One of the most important issues in the path to the convergence of High Performance Computing (HPC) and Big Data is caused by the differences in their software stacks. Despite some research efforts, the interoperability between their programming models and languages is still limited. To deal with this problem we introduce a new computing framework called IgnisHPC, whose main objective is to unify the execution of Big Data and HPC workloads in the same framework. IgnisHPC has native support for multi-language applications using JVM and non-JVM-based languages (currently Java, Python and C/C++). Since MPI was used as its backbone technology, IgnisHPC takes advantage of many communication models and network architectures. Moreover, MPI applications can be directly executed in a efficient way in the framework. The main consequence is that users could combine in the same multi-language code HPC tasks (using MPI) with Big Data tasks (using MapReduce operations). The experimental evaluation demonstrates the benefits of our proposal in terms of performance and productivity with respect to other frameworks such as Spark. IgnisHPC is publicly available for the Big Data and HPC research community.

Contents

	Getting Started
	Requirements

	Installation

	Creating IgnisHPC Containers

	Deploying IgnisHPC Containers

	Launching the first job

	API
	BasicType Reference

	Driver

	Executor

	Docker Images
	Background

	Details

	Properties
	How to set properties?

	Property list

Getting Started

IgnisHPC is a modularized docker framework consisting of multiple source code repositories. The framework is open source, so all repositories can be found in GitHub: IgnisHPC [https://github.com/ignishpc].

Next we summarize the minimum steps to execute a simple job in IgnisHPC.

Requirements

As we mentioned, IgnisHPC is a dockerized framework, so all the system modules are executed inside docker containers. On the other hand, IgnisHPC external dependencies such as schedulers or image storage can be installed independently, but IgnisHPC includes a dockerized version of them.

Therefore, the minimum requirements to run Ignis are:

	Docker: It must be installed and accessible. We recommend using the newest version available.

	Python3: Available by default in most Linux distributions. It is used to execute a deploy script and simplify the installation of IgnisHPC and its dependencies.

	Pip: The deploy script is available as a pip package, although it can be downloaded from the source code repository. In any case, using pip is the easiest way to install IgnisHPC.

	Git (optional): The git binary is required for building IgnisHPC images from repositories.

Installation

IgnisHPC can be installed just using the following command:

$ pip install ignishpc

Once the command is executed, we can check that we have the ignis-deploy command available in the path.
This process must be carried out in all the computing nodes where IgnisHPC is going to be executed.

Creating IgnisHPC Containers

Images of IgnisHPC containers are not available for download. They must be built in your runtime environment. This allows the creation of a custom development environment with complete isolation from other framework installations even on the same machines.

In this example we will use a local docker repository and ignishpc as the base path for all images.

$ ignis-deploy registry start --default

This command will launch a docker repository that will be available on port 5000.

--default parameter indicates that other calls to ignis-deploy should use this repository as the default source.

Once executed, we will receive the following warning message:

info: add '{insecure-registries" : ["myhost:5000"]}' to /etc/docker/daemon.json and restart
 docker daemon service
 use myhost:5000 to refer the registry

The docker registry requires a certificate for validation. We can create one locally or add
{insecure-registries" : ["myhost:5000"]} to /etc/docker/daemon.json with the aim of forcing docker to use an insecure one. Do not forget to restart the docker daemon to reload the configuration.

Once the registration is available, we can proceed with the creation of the IgnisHPC images:

$ ignis-deploy images build --full --sources \
 https://github.com/ignishpc/dockerfiles.git \
 https://github.com/ignishpc/backend.git \
 https://github.com/ignishpc/core-cpp.git \
 https://github.com/ignishpc/core-python.git \
 https://github.com/ignishpc/core-go.git

The first two repositories are essential for the construction of the base images. The command can be executed in several phases, it is not necessary to specify all the repositories in the same execution. The only restriction is that if you use the --full parameter, which creates an extra image with all the core repositories, you must have all the cores together. This allows users to create an image that can run Python, C++ and Go codes in the same container.

Finally, IgnisHPC files can be extracted from an image with:

$ docker run --rm -v $(pwd):/target <ignis-image> ignis-export-all /target

The result will not be executable but can be used in application development.

Deploying IgnisHPC Containers

Once all images are created, it is necessary to deploy the containers. IgnisHPC jobs are launched using the submitter module, but to use a cluster it requires a resource and scheduler manager such as Nomad or Mesos.

Alternatively, IgnisHPC can also be launched as a slurm job in an HPC cluster, docker is replaced by singularity, so a different submitter must be used.

Next we show examples deploying the containers locally (no manager is needed), and using Nomad, Mesos and Slurm.

Docker (Only local)

Submitter using an http endpoint:

$ ignis-deploy submitter start --dfs <working-directory-path> --scheduler docker tcp://myhost:2375

Submitter using a Unix-socket:

$ ignis-deploy submitter start --dfs <working-directory-path> --scheduler docker /var/run/docker.sock \
 --mount /var/run/docker.sock /var/run/docker.sock

Nomad

Master node:

$ ignis-deploy nomad start --password 1234 --volumes <working-directory-path*>

Worker nodes:

$ ignis-deploy nomad start --password 1234 --join myhost1 --default-registry myhost1:5000

Submitter:

$ ignis-deploy submitter start --dfs <working-directory-path*> \
 --scheduler nomad http://myhostX:4646

* The working directory must be available on all nodes via NFS (Network File System) or a DFS (Distributed File System). (Only required for working with files)

Mesos

Zookeeper is requiered by Mesos:

$ ignis-deploy zookeeper start --password 1234

Master node:

$ ignis-deploy mesos start -q 1 --name master -zk zk://master:2281 \
 --service [marathon | singularity] --port-service 8888

Worker nodes:

$ ignis-deploy mesos start --name nodoX -zk zk://master:2281 \
 --port-service 8888 --default-registry master:5000

Submitter:

$ ignis-deploy submitter start --dfs <working-directory-path*> \
 --scheduler [marathon | singularity] http://master:8888

* The working directory must be available on all nodes via NFS (Network File System) or a DFS (Distributed File System). (Only required for working with files)

Slurm

The ignis-slurm submitter can be obtained from ignishpc/slurm-submitter with:

$ docker run --rm -v $(pwd):/target ignishpc/slurm-submitter ignis-export /target

This submitter will allow you to launch ignisHPC on a cluster as a non-root user and without docker.

IgnisHPC Docker images can be converted to singulairty image files with:

$ ignis-deploy images singularity [--host] ignishpc/full ignis_full.sif

The basic syntax of ignis-slurm is the same as the later shown ignis-submit, but a first parameter with job-time must be passed to be requested to slurm. The time can be specified in any format supported by slurm.
For example, a 10 minute job should start with:

$ ignis-slurm 00:10:00

In addition, help text can be displayed using:

$ ignis-slurm --help

Launching the first job

The first step to launch a job is to connect to the submiter container. The default password is ignis, but we can change it inside the container or choose one when launching the submitter.:

$ ssh root@myhost -p 2222

The code we will use as an example is the classic Wordcount application, which can be seen below.

#!/usr/bin/python

import ignis

Initialization of the framework
ignis.Ignis.start()
Resources/Configuration of the cluster
prop = ignis.IProperties()
prop["ignis.executor.image"] = "ignishpc/python"
prop["ignis.executor.instances"] = "1"
prop["ignis.executor.cores"] = "2"
prop["ignis.executor.memory"] = "1GB"
Construction of the cluster
cluster = ignis.ICluster(prop)

Initialization of a Python Worker in the cluster
worker = ignis.IWorker(cluster, "python")
Task 1 - Tokenize text into pairs ('word', 1)
text = worker.textFile("text.txt")
words = text.flatmap(lambda line: [(word, 1) for word in line.split()])
Task 2 - Reduce pairs with same word and obtain totals
count = words.toPair().reduceByKey(lambda a, b: a + b)
Print results to file
count.saveAsTextFile("wordcount.txt")

Stop the framework
ignis.Ignis.stop()

In order to run it, we need to create a file containing a text sample (text.txt) and store it in the working
directory. By default the submitter sets the working directory to /media/dfs. All relative paths used in the
source code are resolved using this working directory, so /media/dfs/text.txt is an alias of text.txt.

Finally, we can execute our code using the submitter:

$ ignis-submit ignishpc/python python3 driver.py

or:

$ ignis-submit ignishpc/python ./driver.py

When the execution has finished, we can see the result of the execution in wordcount.txt located in the working directory. If we want to check the execution logs, we must navigate to the scheduler web or use docker log in case of using docker directly.

Launching without Container

The ignis-submit can also be used outside the submiter container, for example where permanent containers are not allowed:

$ docker run --rm -v $(pwd):/target ignishpc/submitter ignis-export /target

This command will create a ignis folder in the current directory with everything needed to run the submiter. The ignis-deploy command configures the submitter container, but when there is no container, we must set the configuration manually.
The submitter needs a dfs and a scheduler, as ignis-deploy showed, these can be defined as environment variables or in ignis/etc/ignis.conf property file.

set current directory as job directory (ignis.dfs.id in ignis.conf)
export IGNIS_DFS_ID=$(pwd)
set docker as scheduler (ignis.scheduler.type in ignis.conf)
export IGNIS_SCHEDULER_TYPE=docker
set where docker is available (ignis.scheduler.url in ignis.conf)
export IGNIS_SCHEDULER_URL=/var/run/docker.sock

The above example could be launched as follows:

$./ignis/bin/ignis-submit ignishpc/python ./driver.py

API

BasicType Reference

	
class Boolean

	References True of False value condition.

	
class Integer

	References a non-decimal number.

	
class Float

	References a decimal number.

	
class String

	References a text type.

	
class Json

	References a json type, each language implements it in a different way.

	
class Pair(K, V)

	References a combination of key-value types stored together as a pair.

	Parameters

	
	K – Key type.

	V – Value type.

	
class List(T)

	References a ordered collection.

	Parameters

	T – Element type.

	
class Map(K, V)

	References a mapping between a key and a value.

	Parameters

	
	K – Key type.

	V – Value type.

	
class Iterable(T)

	References a collection capable of returning its members one at a time.

	Parameters

	T – Element type.

Driver

Ignis

The class Ignis manages the driver environment. Any driver function called before Ignis.start() and
after Ignis.stop() will fail.

	
class Ignis

	
	
static start()

	Starts the driver environment. The backend module is launched as a sub-process and the other driver functions
can now be called. The function will not return until the entire backend configuration process has been completed.

	
static stop()

	Stops the driver environment. The Backend releases all resources and finishes its execution. The function will
not return until backend has finished.

IProperties

The class IProperties represents a persistent set of properties. Properties can be read, modified or deleted,
initially instances do not contain any properties. If a property that is not stored is read, its default value will be
returned if it exists.

	
class IProperties

	
	
set(key, value)

	Sets a new property with the specified key.

	Parameters

	
	key (String) – Property key.

	value (String) – Property value.

	Returns

	previous value for key or an empty string.

	Return type

	String

	
get(key)

	Searches for the property with the specified key. If the key is not found, default value is returned.

	Parameters

	key (String) – Property key.

	Returns

	value for key or an empty string if it has no default value..

	Return type

	String

	
rm(key)

	Removes a property with the specified key and returns its current value.

	Parameters

	key (String) – Property key.

	Returns

	value for key or an empty string.

	Return type

	String

	
contains(key)

	Returns True if property with the specified key has a value or a default value.

	Parameters

	key (String) – Property key.

	Returns

	property with key is defined.

	Return type

	Boolean

	
toMap(defaults)

	Gets all properties and their values.

	Parameters

	defaults (Boolean) – if true, unstored properties with default values are also returned.

	Returns

	all properties and their values.

	Return type

	Map(String, String)

	
fromMap(map)

	Sets all properties defined in the argument.

	Parameters

	map (Map(String, String)) – A set of properties with their values.

	
load(path)

	Sets all properties defined in the file references by the path. The file must be formatted as
.properties format [https://en.wikipedia.org/wiki/.properties] where each line stores a
property as key=value or key:value format.

	Parameters

	path (String) – File path.

	Raises

	IDriverException – An error is generated if the file does not exist, cannot be read or has an
incorrect format.

	
store(path)

	Stores all properties defined in the file references by the path.

	Parameters

	path (String) – File path.

	Raises

	IDriverException – An error is generated if the file cannot be created.

	
clear()

	Removes all properties.

ICluster

The class ICluster represents a group of executors containers. Containers are identical
instances with the same assigned resources, which are obtained from the properties defined in IProperties.

	
class ICluster(properties, name)

	
	Parameters

	
	properties (IProperties) – Set of properties that will be used to configure the execution environment. Future
modifications to the properties will have no effect.

	name (String) – (Optional) Gives a name to the ICluster, it will be used to identify the
ICluster in the job logs and also in the Scheduler, if it supports it.

	
start()

	By default, the cluster will only be started when the first computation is to be performed. This function allows
you to force their creation and eliminate the time associated with requesting and granting resources. It must be
used to perform performance measurements on the platform.

	
destroy()

	Destroys the current running environment and frees all resources associated with it. Future executions will have
to recreate the environment from scratch.

	
setName(name)

	Sets or changes the name associated with the ICluster. The new name will only affect the ICluster
log itself and future tasks created. The Scheduler and the existing tasks will keep the name used during their
creation.

	Parameters

	name (String) – New name.

	
execute(args)

	Runs a command on all containers associated with the ICluster. This function does not trigger the creation
of the ICluster, it will only be executed if the environment has already been created previously, otherwise
the function will be registered to be invoked immediately after its creation.

	Parameters

	args (List(String)) – Command and its arguments.

	
executeScript(script)

	Like ICluster.execute() but argument is a shell script instead of single command.

	Parameters

	script (String) – Linux Shell script.

	
sendFile(source, target)

	Sends a file to all containers associated with the ICluster. This function does not trigger the creation
of the ICluster, the file only be sent if the environment has already been created previously, otherwise
the function will be registered to be invoked immediately after its creation.

	Parameters

	
	source (String) – Source path in driver container.

	target (String) – Target path in each executor container.

	
sendCompressedFile(source, target)

	Like ICluster.sendFile() but file is extracted once it has been sent. Supported formats are: .tar,
.tar.bz2, .tar.bz, .tar.xz, .tbz2, .tgz, .gz, .bz2, .xz, .zip, .Z.
Note that .rar is also supported, but its license requires it to be installed by the user.

ISource

The class ISource is an auxiliary class used by meta-functions in the driver. A meta-function is a function that
defines part of its implementation using another function that is passed as a parameter. The way in which the function is
defined depends on each implementation.

Typically the following format should be available:

	Ignis path: String representation consisting of a file path and a class. The file indicates where the code is stored
and the class defines the function to be executed. Format is as follows: path:class

	Name: Defines only the name of the function, it is also defined as a string and differs from the previous case
because it does not contain : separator.

	Source Code: Function is defined using the syntax of the executor’s source code. Executor will recognize it as
source code and compile it if necessary.

	Lambda: The function is defined in the driver code and then sent as bytes to the executor. In this case driver
and executor must be programmed in the same programming language and it must support serialization of executable code.

	
class ISource(function, native)

	
	Parameters

	
	function – Overloaded argument to accept all possible function definitions supported in each implementation.

	native (Boolean) – (Optional) Type of serialization used to send parameters. If true, the driver language’s own
serialization will be used, if and only if the executor also has the same language. Otherwise the multi-language
serialization will always be used.

	
addParam(name, value)

	Defines a parameter associated with the function. The value of the parameter can be obtained by the get function
during its execution.

	Parameters

	
	name (String) – Parameter name.

	value – Value to be stored in the parameter, can have any type.

	Returns

	This ISource instance.

	Return type

	ISource

IWorker

The class IWorker represents a group of processes of the same programming language. There is at least one
process in each of the ICluster containers where the worker is created, and all containers have the same number
of executor processes.

	
class IWorker(cluster, type, name, cores, instances)

	
	Parameters

	
	cluster (ICluster) – ICluster where the executors will be created.

	type (String) – Name of the worker to be used, the names of the workers are associated to the programming language
they execute. The available workers are associated with the image used to create the class ICluster.

	name (String) – (Optional) Like ICluster a worker can have a name that identifies it in the job log.

	cores (Integer) – (Optional) Number of cores associated to each executor, by default each executor uses all
available cores inside the container.

	instances (Integer) – (Optional) Number of executors to be launched in each container, by default
only one is launched.

	
start()

	By default, the worker will only be started when the first computation is to be performed. This function allows
you to force their creation.

	
destroy()

	Destroys all processes associated with the worker. Future executions will have to start the processes again.
Destroying the executors means deleting cached elements in memory, only disk cache will be kept.

	
getCluster()

	gets ICluster where worker is created.

	
setName(name)

	Sets or changes the name associated with the IWorker. The new name will only affect the worker
log itself and future tasks created. Existing tasks will keep the name used during their creation.

	Parameters

	name (String) – New name.

	
parallelize(data, partitions, src, native)

	Creates a IDataFrame from an existing collection present in the driver. The elements present in the collection
are distributed to the executors for a parallel processing.

	Parameters

	
	data (Iterable(T)) – A collection object present in the driver.

	partitions (Integer) – How many partitions the collection elements will be divided. For optimal processing, there
should be at least one partition for all cores on each of the executors.

	src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary between languages.
Must implement at least IBeforeFunction interface.

	native (Boolean) – (Optional) Type of serialization used to send data. If true, the driver language’s own
serialization will be used, if and only if the executor also has the same language. Otherwise the multi-language
serialization will always be used.

	Returns

	A parallel collection with the same type of data elements.

	Return type

	IDataFrame(T)

	
importDataFrame(data, src)

	Imports a parallel collection from another worker. The number of partitions will be the same as in the original
worker.

	Parameters

	
	data (IDataFrame(T)) – Parallel collection of source data.

	src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary between languages.
Must implement at least IBeforeFunction interface.

	Returns

	A parallel collection with data elements.

	Return type

	IDataFrame(T)

	
textFile(path, minPartitions)

	Creates a parallel collection by splitting a text file to create at least minPartitions partitions.

	Parameters

	
	path (String) – File path.

	minPartitions (Integer) – Minimal number of partitions.

	Returns

	A parallel collection of strings.

	Return type

	IDataFrame(String)

	Raises

	IDriverException – An error is generated if the file does not exist or cannot be read.

	
plainFile(path, minPartitions, delim)

	Creates a parallel collection by splitting a file using a custom delimiter to create at least minPartitions partitions.

	Parameters

	
	path (String) – File path.

	minPartitions (Integer) – Minimal number of partitions.
:delim String delim: A one-character string.

	Returns

	A parallel collection of strings.

	Return type

	IDataFrame(String)

	Raises

	IDriverException – An error is generated if the file does not exist or cannot be read.

	
partitionObjectFile(path, src)

	Creates a parallel collection from binary partition files.
See IDataFrame.saveAsObjectFile()

	Parameters

	
	path (String) – File path without the .part* extension.

	src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary between languages.
Must implement at east IBeforeFunction interface.

	Returns

	A parallel collection with type stored in the binary file.

	Return type

	IDataFrame(T)

	Raises

	IDriverException – An error is generated if any file do not exist or cannot be read.

	
partitionTextFile(path)

	Creates a parallel collection from text partition files.
See IDataFrame.saveAsTextFile()

	Parameters

	path (String) – File path without the .part* extension.

	Returns

	A parallel collection of strings.

	Return type

	IDataFrame(String)

	Raises

	IDriverException – An error is generated if any file do not exist or cannot be read.

	
partitionJsonFile(path, src, objectMapping)

	Creates a parallel collection from json partition files.
See IDataFrame.saveAsJsontFile()

	Parameters

	
	path (String) – File path without the .part* extension.

	src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary between languages.
Must implement at least IBeforeFunction interface.

	objectMapping (Boolean) – (Optional) If true, json objects are transformed to objects.

	Returns

	A parallel collection of mapped object, if objectMapping is true or otherwise a generic json type is used.

	Return type

	IDataFrame(Json) or IDataFrame(T)

	Raises

	IDriverException – An error is generated if any file do not exist or cannot be read.

	
loadLibrary(path)

	Loads a library of functions in the executor processes. Functions may be invoked using only their name in any
ISource. Library type depends on the programming language of executor.

The library can be defined in two ways:

	Path to a library file. Library must be compiled if the language requires it.

	Source code in plain text, executor will take care of compiling if necessary. This allows you to create
functions dynamically from the driver.

	Parameters

	path (String) – Library path or Source code.

	Raises

	IDriverException – An error is generated if libreary does not exist or cannot be read.

	
execute(src)

	Runs a function in the executors.

	Parameters

	src (IIVoidFunction0 or ISource) – Function to be executed.

	
executeTo(src)

	Runs a function in the executors and generates a parallel collection.

	Parameters

	src (IFunction0 or ISource) – Function to be executed.

	Returns

	A parallel collection created with the elements returned by the function.

	Return type

	IDataFrame(T)

	
call(src, data)

	Runs a function that has been previously loaded by IWorker.loadLibrary(). Values returned by the function
will generate a parallel collection. Note, this function is designed to execute functions in format name, it
does not allow to use the other formats.

	Parameters

	
	src (IFunction or IFunction0 or ISource) – Function name and its arguments. It must implement IFunction interface if data is supplied
or IFunction0 otherwise.

	data (IDataFrame(T)) – (Optional) A parallel collection of elements to be processed by the src function.

	Returns

	A parallel collection created with the elements returned by src function.

	Return type

	IDataFrame(T)

	
voidCall(src, data)

	Runs a function that has been previously loaded by IWorker.loadLibrary(). Like IWorker.call() but
with no return.

	Parameters

	
	src (IVoidFunction or IVoidFunction0 or ISource) – Function name and its arguments. It must implement IVoidFunction interface if data is supplied or
IVoidFunction0 otherwise. Note, this function is designed to execute functions in format name, it does not allow to use
the other formats.

	data (IDataFrame(T)) – (Optional) A parallel collection of elements to be processed by the src function.

IDataFrame

The class IDataFrame represents a parallel collection of elements distributed among the worker executors. All
functions defined within this class process the elements in a parallel and distributed way.

	
class IDataFrame(T)

	
	
class T

	Represents the type associated with the parallel collection. Dynamic languages do not have to make it visible
to the user, it is the input value type for most of the functions defined in IDataFrame.

	
setName(name)

	Sets or changes the name associated with the IDataFrame. The new name will affect only
this IDataFrame and future tasks created from it.

	Parameters

	name (String) – New name.

	
persist(cacheLevel)

	Sets a cache level for elements so that it only needs to be computed once.

	Parameters

	cacheLevel (ICacheLevel) – level of cache.

	
cache(cacheLevel)

	Sets a cache level ICacheLevel.PRESERVE for elements so that it only needs to be computed once.

	
unpersist()

	Elements cache is disabled. Alias for IDataFrame.uncahe.

	
uncahe()

	Elements cache is disabled. Alias for IDataFrame.unpersist.

	
partitions()

	Gets the number of partitions.

	Returns

	Number of partitions.

	Return type

	Integer.

	
saveAsObjectFile(path, compression)

	Saves elements as binary files.

	Parameters

	
	path (String) – path to store the data.

	compression (Integer) – compresion level (0-9).

	Raises

	IDriverException – An error is generated if files exists or cannot be write.

	
saveAsTextFile(path)

	Saves elements as text files.

	Parameters

	path (String) – path to store the data.

	Raises

	IDriverException – An error is generated if files exists or cannot be write.

	
saveAsJsonFile(path, pretty)

	Saves elements as json files.

	Parameters

	
	path (String) – path to store the data.

	pretty (Boolean) – uses an ident format instead of compact.

	Raises

	IDriverException – An error is generated if files exists or cannot be write.

	
repartition(numPartitions, preserveOrdering, global)

	Creates a new Dataframe with a fixes number of partitions.

	Parameters

	
	numPartitions (Integer) – number of partitions.

	preserveOrdering (Boolean) – The order of the elements does not change.

	global (Boolean) – Elements are balanced between different executors. If false, Elements are only balanced
within each executor.

	Returns

	A Dataframe with numPartitions.

	Return type

	IDataFrame(T)

	
partitionByRandom(numPartitions, seed)

	Creates a new Dataframe with a fixes number of partitions. Elements are randomly distributed among the
executors.

	Parameters

	numPartitions (Integer) – number of partitions.
:param Integer seed: Initializes the random number generator.

	Returns

	A Dataframe with numPartitions.

	Return type

	IDataFrame(T)

	
partitionByHash(numPartitions)

	Creates a new Dataframe with a fixes number of partitions. Elements are distributed using a hash function
among the executors.

	Parameters

	numPartitions (Integer) – number of partitions.

	Returns

	A Dataframe with numPartitions.

	Return type

	IDataFrame(T)

	
partitionBy(src, numPartitions)

	Creates a new Dataframe with a fixes number of partitions. Elements are distributed using a custom function
among the executors. The same function return assigns the same partition.

	Parameters

	
	src (IFunction(T, Integer) or ISource.) – Function argument.

	numPartitions (Integer) – number of partitions.

	Returns

	A Dataframe with numPartitions.

	Return type

	IDataFrame(T)

	
map(src)

	Performs a map operation.

	Parameters

	src (IFunction(T, R) or ISource.) – Function argument.

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(R)

	
mapWithIndex(src)

	Performs a map operation. Like IDataFrame.map but global index of the element is available as the first argument
of the function.

	Parameters

	src (IFunction2(Integer, T, R) or ISource.) – Function argument.

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(R)

	
filter(src)

	Performs a filter operation. Only items that return True will be retained.

	Parameters

	src (IFunction(T, Boolean) or ISource.) – Function argument.

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(T)

	
flatmap(src)

	Performs a flatmap operation. Like IDataFrame.map but each element
can generate any number of results.

	Parameters

	src (IFunction(T, Iterable(R)) or ISource.) – Function argument.

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(R)

	
keyBy(src)

	Assigns each element a key with the return of the function.

	Parameters

	src (IFunction(T, R) or ISource.) – Function argument.

	Returns

	A Dataframe of pairs with result elements.

	Return type

	IPairDataFrame(R, T)

	
mapPartitions(src, preservesPartitioning)

	Performs a specialized map that is called only once for each partition, elements can be accessed using an
iterator.

	Parameters

	
	src (IFunction(IReadIterator(T), Iterable(R)) or ISource.) – Function argument.

	preservesPartitioning (Boolean) – Preserves partitioning

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(R)

	
mapPartitionsWithIndex(src, preservesPartitioning)

	Performs a specialized map that is called only once for each partition, elements can be accessed using an
iterator. Like IDataFrame.mapPartitions but global index of the partition is available as the first argument
of the function.

	Parameters

	
	src (IFunction2(Integer, IReadIterator(T), Iterable(R)) or ISource.) – Function argument.

	preservesPartitioning (Boolean) – Preserves partitioning

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(R)

	
mapExecutor(src)

	Performs a specialized map that is called only once for each executor, elements can be accessed using a
list of lists where first list represents each partition. Function argument can be modified to add or
remove values, if you want to generate other value type use :class: IDataFrame.mapExecutorTo.

	Parameters

	src (IVoidFunction(List(List(T))) or ISource.) – Function argument.

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(R)

	
mapExecutorTo(src)

	Performs a specialized map that is called only once for each executor, elements can be accessed using a
list of lists where first list represents each partition. A new list of lists must be returned to
generate new partitions.

	Parameters

	src (IFunction(List(List(T)), List(List(R))) or ISource.) – Function argument.

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(R)

	
groupBy(src, numPartitions)

	Groups elements that share the same key, which is obtained from the return of the function.

	Parameters

	
	src (IFunction(T, R)) or ISource.) – Function argument.

	numPartitions (Integer) – (Optional) Number of resulting partitions.

	Returns

	A Dataframe of pairs with result elements.

	Return type

	IPairDataFrame(R, List(T))

	
sort(ascending, numPartitions)

	Sort the elements using their natural order.

	Parameters

	
	ascending (Boolean) – Allows you to choose between ascending and descending order.

	numPartitions (Integer) – (Optional) Number of resulting partitions.

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(T)

	
sortBy(src, ascending, numPartitions)

	Sort the elements using a custom function, that checks if the first argument is less than the second.

	Parameters

	
	src (IFunction2(T, T, Boolean)) or ISource.) – Function argument.

	ascending (Boolean) – Allows you to choose between ascending and descending order.

	numPartitions (Integer) – (Optional) Number of resulting partitions.

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(T)

	
union(other, preserveOrder, src)

	Merges elements of two dataframes.

	Parameters

	
	other (IDataFrame(T)) – other dataframe.

	preserveOrder (Boolean) – If true, the second dataframe is concatenated to the first, otherwise they are
mixed.

	src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary between languages.
Must implement at east IBeforeFunction interface.

	Returns

	A Dataframe with result elements of the two dataframes.

	Return type

	IDataFrame(T)

	
distinct(numPartitions, src)

	Duplicate elements are eliminated.

	Parameters

	
	numPartitions (Integer) – Number of resulting partitions.

	src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary between languages.
Must implement at east IBeforeFunction interface.

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(T)

	
reduce(src)

	Accumulate the elements using a custom function, which must be associative and commutative.
Like IDataFrame.treeReduce but final accumulation is performed in a single executor.

	Parameters

	src (IFunction2(T, T, T)) or ISource.) – Function argument.

	Returns

	Element resulting from accumulation.

	Return type

	T

	
treeReduce(src)

	Accumulate the elements using a custom function, which must be associative and commutative.
Like IDataFrame.reduce but final accumulation is performed in parallel using multiple executors.

	Parameters

	src (IFunction2(T, T, T)) or ISource.) – Function argument.

	Returns

	Element resulting from accumulation.

	Return type

	T

	
collect()

	Retrieve all the elements.

	Returns

	All the elements.

	Return type

	List(T)

	
aggregate(zero, seqOp, combOp)

	Accumulate the elements using two functions, which must be associative and commutative.
Like :class: IDataFrame.treeAggregate` but final accumulation is performed in a single executor.

	Parameters

	
	zero (IFunction0(R)) or ISource.) – Function argument to generate initial value of target type.

	seqOp (IFunction2(T, R, R)) or ISource.) – Function argument to accumulate the elements of each partition.

	combOp (IFunction2(R, R, R)) or ISource.) – Function argument to accumulate the results of all partitions .

	Returns

	Element resulting from accumulation.

	Return type

	R

	
treeAggregate(zero, seqOp, combOp)

	Accumulate the elements using two functions, which must be associative and commutative.
Like IDataFrame.aggregate but final accumulation is performed in parallel using multiple executors.

	Parameters

	
	zero (IFunction0(R)) or ISource.) – Function argument to generate initial value of target type.

	seqOp (IFunction2(T, R, R)) or ISource.) – Function argument to accumulate the elements of each partition.

	combOp (IFunction2(R, R, R)) or ISource.) – Function argument to accumulate the results of all partitions .

	Returns

	Element resulting from accumulation.

	Return type

	R

	
fold(zero, src)

	Accumulate the elements using a initial value and custom function, which must be associative and commutative.
Like IDataFrame.treeFold but final accumulation is performed in a single executor.

	Parameters

	
	zero (IFunction0(R)) or ISource.) – Function argument to generate initial value of target type.

	src (IFunction2(T, T, T)) or ISource.) – Function argument to accumulate.

	Returns

	Element resulting from accumulation.

	Return type

	T

	
treeFold(zero, src)

	Accumulate the elements using a initial value and custom function, which must be associative and commutative.
Like IDataFrame.treeFold but final accumulation is performed in parallel using multiple executors.

	Parameters

	
	zero (IFunction0(R)) or ISource.) – Function argument to generate initial value of target type.

	src (IFunction2(T, T, T)) or ISource.) – Function argument to accumulate.

	Returns

	Element resulting from accumulation.

	Return type

	T

	
take(num)

	Retrieves the first num elements.

	Parameters

	num (Integer) – Number of elements.

	Returns

	First num elements.

	Return type

	List(T)

	
foreach(src)

	Calls a custom function once for each element.

	Parameters

	src (IVoidFunction(T) or ISource.) – Function argument.

	
foreachPartition(src)

	Calls a custom function once for each partition, elements can be accessed using an iterator.

	Parameters

	src (IVoidFunction(IReadIterator(T)) or ISource.) – Function argument.

	
foreachExecutor(src)

	Calls a custom function once for each executor, elements can be accessed using a list of lists where first list
represents each partition.

	Parameters

	src (IVoidFunction(List(List(T))) or ISource.) – Function argument.

	
top(num, cmp)

	Retrieves the first num elements in descending order. A custom function can be used to checks if the first
argument is less than the second

	Parameters

	
	num (Integer) – Number of elements.

	cmp (IFunction2(T, T, Boolean)) or ISource.) – (Optional) Comparator to be used instead of the natural order.

	Returns

	First num elements.

	Return type

	List(T)

	
takeOrdered(num, cmp)

	Retrieves the first num elements in ascending order. A custom function can be used to checks if the first
argument is less than the second

	Parameters

	
	num (Integer) – Number of elements.

	cmp (IFunction2(T, T, Boolean)) or ISource.) – (Optional) Comparator to be used instead of the natural order.

	Returns

	First num elements.

	Return type

	List(T)

	
sample(withReplacement, fraction, seed)

	Generates a random sample records from the original elements.

	Parameters

	
	withReplacement (Boolean) – An element can be selected more than once.

	fraction (Float) – Percentage of the sample.

	seed (Integer) – Initializes the random number generator.

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(T)

	
takeSample(withReplacement, num, seed)

	Generates and Retrieves a random sample of num records from the original elements.

	Parameters

	
	withReplacement (Boolean) – An element can be selected more than once.

	num (Integer) – Number of elements.

	seed (Integer) – Initializes the random number generator.

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(T)

	
count()

	Count the elements.

	Returns

	Number of elements.

	Return type

	Integer

	
max(cmp)

	Retrieves the element with the maximum value. A custom function can be used to checks if the first argument is
less than the second. Like Dataframe.top with num=1

	Parameters

	
	num (Integer) – Number of elements.

	cmp (IFunction2(T, T, Boolean)) or ISource.) – (Optional) Comparator to be used instead of the natural order.

	Returns

	Element with the maximum value.

	Return type

	T

	
min(cmp)

	Retrieves the element with the minimal value. A custom function can be used to checks if the first argument is
less than the second. Like Dataframe.takeOrdered with num=1

	Parameters

	
	num (Integer) – Number of elements.

	cmp (IFunction2(T, T, Boolean)) or ISource .) – (Optional) Comparator to be used instead of the natural order.

	Returns

	Element with the minimal value.

	Return type

	T

	
toPair()

	Converts IDataFrame to IPairDataFrame when IDataFrame.T is a Pair of
IPairDataFrame.K and IPairDataFrame.V.

	Returns

	A Dataframe of pairs

	Return type

	IPairDataFrame(K, V)

	
class IPairDataFrame(K, V)

	Extends IDataFrame funtionality when IDataFrame.T is a Pair

	
class K

	Represents the value type associated with the parallel collection. Dynamic languages do not have to make it visible
to the user, it is the key input value type for most of the functions defined in IPairDataFrame.

	
class V

	Represents the value type associated with the parallel collection. Dynamic languages do not have to make it visible
to the user, it is the value input value type for most of the functions defined in IPairDataFrame.

	
join(other, preserveOrder, numPartitions, src)

	Joins an element of this collection with an element of other that share the same key.

	Parameters

	
	other (IPairDataFrame(K, V)) – other dataframe.

	numPartitions (Integer) – Number of resulting partitions.

	src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary between languages.
Must implement at east IBeforeFunction interface.

	Returns

	A Dataframe of pairs with result elements.

	Return type

	IPairDataFrame(K, Pair(V, V))

	
flatMapValues(src)

	Performs a map function only on the values while preserving the key. Like IPairDataFrame.mapValues but each
element can generate any number of results, key is duplicated or deleted if necessary.

	Parameters

	src (IFunction(V, R) or ISource.) – Function argument.

	Returns

	A Dataframe of pairs with result elements.

	Return type

	IPairDataFrame(K, R)

	
mapValues(src)

	Performs a map function only on the values while preserving the key.

	Parameters

	src (IFunction(V, R) or ISource.) – Function argument.

	Returns

	A Dataframe of pairs with result elements.

	Return type

	IPairDataFrame(K, R)

	
groupByKey(numPartitions, src)

	Groups elements that share the same key.

	Parameters

	
	numPartitions (Integer) – Number of resulting partitions.

	src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary between languages.
Must implement at east IBeforeFunction interface.

	Returns

	A Dataframe of pairs with result elements.

	Return type

	IPairDataFrame(K, List(V))

	
reduceByKey(src, numPartitions, localReduce)

	Accumulate the values that share the same key using a custom function, which must be associative and
commutative.

	Parameters

	
	src (IFunction2(V, V, V)) or ISource.) – Function argument.

	numPartitions (Integer) – Number of resulting partitions.

	localReduce (Boolean) – Accumulate the values that share the same key in a executor before global
accumulation. Reduces the size of the exchange if there are duplicated keys in multiple partitions.

	Returns

	A Dataframe of pairs with result elements.

	Return type

	IPairDataFrame(K, V)

	
aggregateByKey(zero, seqOp, combOp, numPartitions)

	Accumulate the values that share the same key using two functions, which must be associative and commutative.

	Parameters

	
	zero (IFunction0(R)) or ISource.) – Function argument to generate initial value of target type.

	seqOp (IFunction2(V, R, R)) or ISource.) – Function argument to accumulate the values that share the same key of each partition.

	combOp (IFunction2(R, R, R)) or ISource.) – Function argument to accumulate the results that share the same key of all partitions .

	numPartitions (Integer) – Number of resulting partitions.

	Returns

	A Dataframe of pairs with result elements.

	Return type

	IPairDataFrame(K, V)

	
foldByKey(zero, src, numPartitions, localFold)

	Accumulate the values that share the same key using a initial value and custom function, which must be
associative and commutative.

	Parameters

	
	zero (IFunction0(R)) or ISource.) – Function argument to generate initial value of target type.

	src (IFunction2(V, V, V)) or ISource.) – Function argument to accumulate.

	numPartitions (Integer) – Number of resulting partitions.

	localFold (Boolean) – Accumulate the values that share the same key in a executor before global
accumulation. Reduces the size of the exchange if there are duplicated keys in multiple partitions.

	Returns

	A Dataframe of pairs with result elements.

	Return type

	IPairDataFrame(K, V)

	
sortByKey(ascending, numPartitions, src)

	Sort the keys using their natural order.

	Parameters

	
	ascending (Boolean) – Allows you to choose between ascending and descending order.

	numPartitions (Integer) – Number of resulting partitions.

	src (ISource) – (Optional) Auxiliary function to configure executor, its use may vary between languages.
Must implement at east IBeforeFunction interface.

	Returns

	A Dataframe of pairs with result elements.

	Return type

	IPairDataFrame(K, V)

	
keys()

	Retrieve unique keys.

	Returns

	The unique keys.

	Return type

	List(K)

	
values()

	Retrieve unique values.

	Returns

	The unique values.

	Return type

	List(V)

	
sampleByKey(withReplacement, fractions, seed, native)

	Generates a random sample records from the values that share the same key.

	Parameters

	
	withReplacement (Boolean) – An element can be selected more than once.

	fraction (Map(K, Float)) – Percentage of the sample by key. Absences are taken as zero.

	seed (Integer) – Initializes the random number generator.

	native (Boolean) – (Optional) sends fractions with native serialization.

	Returns

	A Dataframe with result elements.

	Return type

	IDataFrame(T)

	
countByKey()

	Count unique keys.

	Returns

	Number unique of values.

	Return type

	Integer

	
countByValue()

	Count unique keys.

	Returns

	Number unique of values.

	Return type

	Integer

	
class ICacheLevel

	
	
NO_CACHE: Integer = 0

	Elements cache is disabled.

	
PRESERVE: Integer = 1

	Elements will be cached in the same storage in which it is stored.

	
MEMORY: Integer = 2

	Elements will be cached on memory storage.

	
RAW_MEMORY: Integer = 3

	Elements will be cached on raw memory storage.

	
DISK: Integer = 4

	Elements will be cached on disk storage.

IDriverException

The class IDriverException represents an execution error. Exceptions are defined together with the function that
generates them, but they are actually thrown by the function that causes the execution.

	
class IDriverException

	

Executor

	
class IContext

	The executor context allows the API functions to interact with the rest of the IgnisHPC system.

	
cores()

	
	Returns

	Number of cores assigned to the executor.

	Return type

	Integer

	
executors()

	
	Returns

	Number of executors.

	Return type

	Integer

	
executorId()

	
	Returns

	Unique identifier of the executor, a number greater than or equal to zero and less than the number
of executors.

	Return type

	Integer

	
threadId()

	
	Returns

	Unique identifier of the current thread, a number greater than or equal to zero and less than the
than the number of cores.

	Return type

	Integer

	
mpiGroup()

	
	Returns

	Returns the mpi group of the executors.

	
props()

	
	Returns

	Driver IProperties as Map object.

	Return type

	Map(String, String)

	
vars()

	(This function may vary depending on the implementation.)

	Returns

	Variables sent by ISource.addParam as Map object.

	Return type

	Map(String, Any)

	
class IReadIterator

	Transverse through elements of a partition.

	
hasNext()

	
	Returns

	True if elements remain

	Return type

	Boolean

	
next()

	
	Returns

	Next element.

	
class IBeforeFunction

	
	
before(context)

	
	Parameters

	context (IContext) – The executor context.

	
class IVoidFunction0

	
	
before(context)

	
	Parameters

	context (IContext) – The executor context.

	
call(context)

	
	Parameters

	context (IContext) – The executor context.

	
after(context)

	
	Parameters

	context (IContext) – The executor context.

	
class IVoidFunction

	
	
before(context)

	
	Parameters

	context (IContext) – The executor context.

	
call(context, v)

	
	Parameters

	
	context (IContext) – The executor context.

	v – Argument

	
after(context)

	
	Parameters

	context (IContext) – The executor context.

	
class IVoidFunction2

	
	
before(context)

	
	Parameters

	context (IContext) – The executor context.

	
call(context, v1, v2)

	
	Parameters

	
	context (IContext) – The executor context.

	v1 – Argument 1

	v2 – Argument 2

	
after(context)

	
	Parameters

	context (IContext) – The executor context.

	
class IFunction0

	
	
before(context)

	
	Parameters

	context (IContext) – The executor context.

	
call(context)

	
	Parameters

	context (IContext) – The executor context.

	Returns

	This function must return a value.

	
after(context)

	
	Parameters

	context (IContext) – The executor context.

	
class IFunction

	
	
before(context)

	
	Parameters

	context (IContext) – The executor context.

	
call(context, v)

	
	Parameters

	
	context (IContext) – The executor context.

	v – Argument

	Returns

	This function must return a value.

	
after(context)

	
	Parameters

	context (IContext) – The executor context.

	
class IFunction2

	
	
before(context)

	
	Parameters

	context (IContext) – The executor context.

	
call(context, v1, v2)

	
	Parameters

	
	context (IContext) – The executor context.

	v1 – Argument 1

	v2 – Argument 2

	Returns

	This function must return a value.

	
after(context)

	
	Parameters

	context (IContext) – The executor context.

Docker Images

[image: IgnisHPC images]
Background

IgnisHPC is fully containerized, these can be extended to create custom runtime environments and isolate incompatible
modules. For those unfamiliar with containers, containers are running instances of an image, which is an immutable
environment that serves as the starting point when the container is started.

IgnisHPC images are organized according to a hierarchy, shown in the figure above, which allows us to
extend and create new modules easily and simply. The images have an associated namespace that groups all the hierarchy
of images, by default it is ignishpc but an user can create his own. Although all images have an important role to
play, in most cases, users should only familiarize themselves with the core images. A core container stores the IgnisHPC
implementation for a given language as well as its dependencies. Images without an associated IgnisHPC module are stored
in the Dockerfiles repository.

Note that only images belonging to the IgnisHPC architecture are covered, images of external dependencies are optional
and are outside the scope of this document.

Details

Base

Base, as its name indicates, is the base image of IgnisHPC. Base is created as an extension of the official ubuntu
image whose version is associated with the IgnisHPC version. This image only defines environment variables and creates
the IgnisHPC folder structure, which can be customized and modify the other images easily.

Builder

Builder extends from base and installs the most common dependencies used in compilation environments such as the GNU Compiler
Collection, the GNU Debugger and other libraries and development tools needed for software compilation. This image and its
derivatives are only used for software construction, they are never used for code execution.

common-Builder

In this image the dependencies common to the whole system are stored and compiled.
MPI is compiled and modified from sources in this image and the thrift library is stored so that the cores do not have
to download it.

driver-Builder

This image is associated with the driver environment build, which compiles the source code and defines an installation
script to install it in the driver runtime environment. This image belongs to the Backend module and both are stored in
the same repository.

executor-Builder

This image is associated with the executor environment build, there is no module associated to the executor, so only the
installation script is created to install it in the executor runtime environment and compiles any dependencies if
necessary.

common

Common execution environment for the execution of all IgnisHPC modules, this image extends from base to inherit the
environment configuration. The image build depends on driver-builder and exectutor-builder, from which it obtains
the dependencies and installation scripts for a driver and executor environment. Neither the dependencies nor the
runtime environments are installed, they are just stored.

core-builder

The programming languages supported by IgnisHPC are known as cores, which consist of a driver code and an executor code.
Each core has a builder image used for the compilation of sources and its dependencies and for the creation of an
installation script. The name of the image must be the name of the core with the suffix -builder and must be
stored in the same repository as the core source code.

core images

Core images are the execution environments used by users to run their codes in IgnisHPC. The core images are three and
are generated automatically from their corresponding builder extending the common image.

	It has the same name as the core with suffix -driver, it has the driver environment installed.

	It has the same name as the core with suffix -executor, it has the executor environment installed.

	It has the same name as the core, it has the driver and executor environment installed.

The core images have the core and its dependencies installed but can only be used as a driver or executor if its
environment is installed.

core helper images

In some cases it is possible that a core may need an additional image. For example, compiled languages may define
a -compiler image to facilitate the compilation process. These images are stored in the source code repository
and should be prefixed with the core name to identify them.

full

A full runtime Image, like the cores, is generated automatically. This image has the enviroment driver,
the enviroment executor and all available cores installed. This is the default image for the executors
when no image is selected.

submitter

This image is associated with the IgnisHPC job launch, with are launched using the ignis-submit
script. The submiter module is implemented together with the backend module, so both are compiled
in the driver-builder and the image is stored in the backend repository.

Properties

IgnisHPC properties control most of the application settings and are configured separately for each application. Properties can be defined dynamically in the driver code, in the submitter script or as an environment variable. Default values are stored in both cases in /opt/ignis/etc/ignis.conf.

All the system variables start with the prefix ignis. They can be of different types:

	Read-Only variables: contain information about the current job (ignis.home, ignis.job.name, ignis.job.directory, …)

	Driver/submitter variables: must be defined before launching the driver, any later modification will have no effect on the system (ignis.driver.image, ignis.driver.port, ignis.driver.cores, …)

	Executors variables: can be defined by all the available methods. Once the execution environment is created, modifications will have no effect (ignis.executor.cores, ignis.partition.type, ignis.modules.io.compression, …)

How to set properties?

Driver code

Driver has a Properties object available that allows users to read and write properties. The default values can be overwritten but will recover their value if the property is deleted.

See the driver section for more details.

Enviroment variable

Driver and submitter scan the environment variables for properties at startup. Environment variables starting with IGNIS_ will be treated as properties. The variable names will be converted to lowercase and the _ will be converted to .. For example, IGNIS_FOO_BAR will be stored as ignis.foo.bar, whose value will remain unchanged.

Submitter script

The submitter sets the properties values using the -p or --properties parameter when a job is launched.

See submitter section for more details.

File

Default values are stored in /opt/ignis/etc/ignis.conf using Java Properties with a key=value format.

Mixed definition

In case of multiple definitions of the same variable, the following priority list will be used:

	Driver Properties Object (highest priority)

	Driver Container enviroment variable

	Submitter script argument

	Submitter Container enviroment variable

	File /opt/ignis/etc/ignis.conf*

* There are two different files in the driver and submitter, and each one only stores the default values for its module. Note that IgnisHPC does not define any default value outside the configuration files, which allows users to know the values of all the system variables. Therefore, values can be modified but never deleted.

Property list

Base Properties

	Name

	Type

	Default

	Context

	Description

	ignis.debug

	Boolean

	False

	All

	Enables debugging messages.

	ignis.home

	Path

	auto

	Driver
Executor

	Path where IgnisHPC is installed, IgnisHPC images
set this value to /opt/ignis.

	ignis.options

	Raw

	auto

	Driver

	Raw value used by the submitter to send options to
the driver.

	ignis.working.directory

	Path

	auto

	Driver
Executor

	Working directory of the current Job, it is used to
resolve all relative paths.

Job Properties

	Name

	Type

	Default

	Context

	Description

	ignis.job.id

	String

	auto

	Driver

	Job identifier, generated and used by the scheduler.

	ignis.job.name

	String

	auto

	Driver

	Job name, can be sent as a submitter parameter,
otherwise it will be generated automatically. The
final job name may vary depending on the scheduler
used.

	ignis.job.directory

	Path

	auto

	Executor

	Directory where the job data is stored, it is
generated as a subdirectory of the working directory.

	ignis.job.worker

	Integer

	auto

	Executor

	Identifies the worker whose instance is the executor.

Distributed Filesystem (DFS) Properties

	Name

	Type

	Default

	Context

	Description

	ignis.dfs.id

	String

	auto

	Driver

	DFS identifier, it identifies DFS in the scheduler.

	ignis.dfs.home

	Path

	auto

	Driver
Executor

	Directory where the DFS is mounted on.

Scheduler Properties

	Name

	Type

	Default

	Context

	Description

	ignis.scheduler.url

	URL[]

	auto

	Driver

	One or more Scheduler API URL, syntax is
Scheduler-dependent.

	ignis.scheduler.type

	String

	auto

	Driver

	Scheduler implementation name. See Scheduler section
for value names.

	ignis.scheduler.dns

	String[]

	auto

	Driver

	Hostnames to resolve in the container network.

	ignis.scheduler.param.{name}

	String

	
	Driver

	It sets <name> parameter for the Scheduler,
each Scheduler has its own parameters.

Driver Properties

	Name

	Type

	Default

	Context

	Description

	ignis.driver.image

	String

	empty

	Driver

	Driver: container image

	ignis.driver.cores

	Interger

	1

	Driver

	Driver: number of cores

	ignis.driver.memory

	String

	1GB

	Driver

	Driver: memory limit in Bytes, might use prefixes
(K, M, G, …) or (Ki, Mi, Gi, …).

	ignis.driver.rpc.port

	Port

	4000

	Driver

	Backend service listening port.

	ignis.driver.rpc.compression

	Integer

	6

	Driver

	Backend service RPC zlib compression level. (0-9)

	ignis.driver.swappiness

	Integer

	empty

	Driver

	Driver: Container swappiness rate. (0-100)

	ignis.driver.pool

	Integer

	8

	Driver

	Minimum number of workers on standby when the Backend
is idle.

	ignis.driver.port.{tcp|udp}.
{cport}

	Port

	
	Driver

	Driver: exposes a container port to a host port.
Value 0 generates a random host port.

	ignis.driver.ports.{tcp|udp}

	Integer

	
	Driver

	Driver: exposes a specific number of random ports to
the host, ports are exposed to the same value on host
.

	ignis.driver.bind.{cpath}

	Path

	
	Driver

	Driver: binds a container path cpath to a host
path. Add ‘:ro’ for read-only.

	ignis.driver.volume.{cpath}

	String

	
	Driver

	Driver: Creates a volume in the path with value size
in Bytes, might use prefixes (K, M, G, …) or
(Ki, Mi, Gi, …).

	ignis.driver.hosts

	String[]

	empty

	Driver

	Driver: the container must be launched on one of the
hosts in order of preference.

	ignis.driver.env.{name}

	String

	empty

	Driver

	Driver: creates an environment variable in the
container.

	ignis.driver.public.key

	String

	auto

	Driver

	SSH tunnel public key.

	ignis.driver.private.key

	String

	auto

	Driver
Executor

	SSH tunnel private key.

	ignis.driver.healthcheck.port

	String

	1963

	Driver

	Backend healthcheck listening port.

	ignis.driver.healthcheck.url

	String

	auto

	Driver
Executor

	Backend healthcheck URL.

	ignis.driver.healthcheck.
interval

	Integer

	60

	Driver
Executor

	How often the driver is checked to see if it is still
alive.

	ignis.driver.healthcheck.
timeout

	Integer

	20

	Driver
Executor

	Backend healthcheck response timeout.

	ignis.driver.healthcheck.
retries

	Integer

	5

	Driver
Executor

	Number of healthcheck failures before aborting.

Executor Properties

	Name

	Type

	Default

	Context

	Description

	ignis.executor.instances

	Integer

	1

	Executor

	Number of executors.

	ignis.executor.attempts

	Integer

	2

	Executor

	Number of execution attempts before failure.

	ignis.executor.image

	String

	ignishpc
/full

	Executor

	Executor: container image.

	ignis.executor.cores

	Interger

	1

	Executor

	Executor: number of cores.

	ignis.executor.cores.single

	String[]

	python

	Executor

	Executors that do not support multithreading. Threads
are transformed into processes.

	ignis.executor.memory

	String

	1GB

	Executor

	Executor: memory limit in Bytes, might use prefixes
(K, M, G, …) or (Ki, Mi, Gi, …).

	ignis.executor.rpc.port

	Port

	5000

	Executor

	Executor service listening port.

	ignis.executor.rpc.compression

	Integer

	6

	Executor

	Executor service RPC zlib compression level. (0-9)

	ignis.executor.swappiness

	Integer

	0

	Executor

	Executor: container swappiness rate. (0-100)

	ignis.executor.isolation

	Boolean

	True

	Executor

	Prevents different workers from running in the same
container at the same time.

	ignis.executor.directory

	Path

	auto

	Executor

	Directory where the job data is stored, it is
generated as a subdirectory of job directory.

	ignis.executor.port.{tcp|udp}
.{cport}

	Port

	
	Executor

	Executor: exposes a container port to a host port.
Value 0 generates a random host port.

	ignis.executor.ports.
{tcp|udp}

	Integer

	
	Executor

	Executor: exposes a specific number of random ports
to the host, ports are exposed to the same value on
host.

	ignis.executor.bind.{cpath}

	Path

	
	Executor

	Executor: binds a container path cpath to a host
path. Add ‘:ro’ to value for read-only.

	ignis.executor.volume.{cpath}

	String

	
	Executor

	Executor: creates a volume in the path with value
size in Bytes, might use prefixes (K, M, G, …) or
(Ki, Mi, Gi, …).

	ignis.executor.hosts

	String[]

	empty

	Executor

	Executor: the container must be launched on one of
the hosts in order of preference.

	ignis.executor.env.{name}

	String

	empty

	Executor

	Executor: creates an environment variable in the
container.

Partition Properties

	Name

	Type

	Default

	Context

	Description

	ignis.partition.type

	String

	Memory

	Executor

	Storage type for partitions, must be Memory,
RawMemory or Disk.

	ignis.partition.minimal

	String

	128MB

	Executor

	Minimum partition size from file.

	ignis.partition.compression

	Integer

	0

	Executor

	Storage zlib compresion level. Available for
RawMemory and Disk. (0-9)

	ignis.partition.serialization

	String

	native

	Executor

	Type of serialization with executors of the same
language.

Transport Properties

	Name

	Type

	Default

	Context

	Description

	ignis.transport.cores

	Float

	0.0

	Executor

	Number of threads used to execute a transport action
at the same time. If the value is less than 1, the
value will be multiplied by ignis.executor.cores.

	ignis.transport.compression

	Integer

	0

	Executor

	Transport zlib compresion level. (0-9)

	ignis.transport.ports

	Integer

	20

	Executor

	Number of ports reserved for data exchanges.

	ignis.transport.minimal

	String

	100KB

	Executor

	Minimum size to open a data transport channel,
otherwise it will be sent by RPC.

	ignis.transport.element.size

	String

	256B

	Executor

	Average size per element to use as a reference when
it cannot be calculated.

Module Properties

	Name

	Type

	Default

	Context

	Description

	ignis.modules.io.compression

	Integer

	0

	Executor

	File zlib compresion level. (0-9)

	ignis.modules.io.cores

	Float

	0.0

	Executor

	Number of threads used to read/write files at the
same time. If the value is less than 1, the value
will be multiplied by ignis.executor.cores.

	ignis.transport.compression

	Integer

	0

	Executor

	Transport zlib compresion level. (0-9)

	ignis.modules.io.overwrite

	Boolean

	False

	Executor

	Output files are overwritten if they already exist.

	ignis.modules.sort.samples

	Float

	0.001

	Executor

	Sampling size in the sort algorithm. Number of
samples is calculated using this value and the number
of elements. If the value is greater than 1, it will
be used as the number of samples.

	ignis.modules.sort.resampling

	Boolean

	False

	Executor

	Samples from the sort algorithm are resampled for
parallel processing. It is only useful if large
amounts of data are sorted or if the sample size is
very high.

	ignis.modules.exchange.type

	String

	auto

	Executor

	Algorithm used for data exchange, can be sync or
async. Any other value selects the method that best
fits.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	addParam() (ISource method)

 	after() (IFunction method)

 	(IFunction0 method)

 	(IFunction2 method)

 	(IVoidFunction method)

 	(IVoidFunction0 method)

 	(IVoidFunction2 method)

 	
 	aggregate() (IDataFrame method)

 	aggregateByKey() (IPairDataFrame method)

B

 	
 	before() (IBeforeFunction method)

 	(IFunction method)

 	(IFunction0 method)

 	(IFunction2 method)

 	(IVoidFunction method)

 	(IVoidFunction0 method)

 	(IVoidFunction2 method)

 	
 	Boolean (built-in class)

C

 	
 	cache() (IDataFrame method)

 	call() (IFunction method)

 	(IFunction0 method)

 	(IFunction2 method)

 	(IVoidFunction method)

 	(IVoidFunction0 method)

 	(IVoidFunction2 method)

 	(IWorker method)

 	
 	clear() (IProperties method)

 	collect() (IDataFrame method)

 	contains() (IProperties method)

 	cores() (IContext method)

 	count() (IDataFrame method)

 	countByKey() (IPairDataFrame method)

 	countByValue() (IPairDataFrame method)

D

 	
 	destroy() (ICluster method)

 	(IWorker method)

 	
 	distinct() (IDataFrame method)

E

 	
 	execute() (ICluster method)

 	(IWorker method)

 	executeScript() (ICluster method)

 	
 	executeTo() (IWorker method)

 	executorId() (IContext method)

 	executors() (IContext method)

F

 	
 	filter() (IDataFrame method)

 	flatmap() (IDataFrame method)

 	flatMapValues() (IPairDataFrame method)

 	Float (built-in class)

 	fold() (IDataFrame method)

 	
 	foldByKey() (IPairDataFrame method)

 	foreach() (IDataFrame method)

 	foreachExecutor() (IDataFrame method)

 	foreachPartition() (IDataFrame method)

 	fromMap() (IProperties method)

G

 	
 	get() (IProperties method)

 	getCluster() (IWorker method)

 	
 	groupBy() (IDataFrame method)

 	groupByKey() (IPairDataFrame method)

H

 	
 	hasNext() (IReadIterator method)

I

 	
 	IBeforeFunction (built-in class)

 	ICacheLevel (built-in class)

 	ICacheLevel.DISK (built-in variable)

 	ICacheLevel.MEMORY (built-in variable)

 	ICacheLevel.NO_CACHE (built-in variable)

 	ICacheLevel.PRESERVE (built-in variable)

 	ICacheLevel.RAW_MEMORY (built-in variable)

 	ICluster (built-in class)

 	IContext (built-in class)

 	IDataFrame (built-in class)

 	IDataFrame.T (built-in class)

 	IDriverException (built-in class)

 	IFunction (built-in class)

 	IFunction0 (built-in class)

 	
 	IFunction2 (built-in class)

 	Ignis (built-in class)

 	importDataFrame() (IWorker method)

 	Integer (built-in class)

 	IPairDataFrame (built-in class)

 	IPairDataFrame.K (built-in class)

 	IPairDataFrame.V (built-in class)

 	IProperties (built-in class)

 	IReadIterator (built-in class)

 	ISource (built-in class)

 	Iterable (built-in class)

 	IVoidFunction (built-in class)

 	IVoidFunction0 (built-in class)

 	IVoidFunction2 (built-in class)

 	IWorker (built-in class)

J

 	
 	join() (IPairDataFrame method)

 	
 	Json (built-in class)

K

 	
 	keyBy() (IDataFrame method)

 	
 	keys() (IPairDataFrame method)

L

 	
 	List (built-in class)

 	
 	load() (IProperties method)

 	loadLibrary() (IWorker method)

M

 	
 	Map (built-in class)

 	map() (IDataFrame method)

 	mapExecutor() (IDataFrame method)

 	mapExecutorTo() (IDataFrame method)

 	mapPartitions() (IDataFrame method)

 	
 	mapPartitionsWithIndex() (IDataFrame method)

 	mapValues() (IPairDataFrame method)

 	mapWithIndex() (IDataFrame method)

 	max() (IDataFrame method)

 	min() (IDataFrame method)

 	mpiGroup() (IContext method)

N

 	
 	next() (IReadIterator method)

P

 	
 	Pair (built-in class)

 	parallelize() (IWorker method)

 	partitionBy() (IDataFrame method)

 	partitionByHash() (IDataFrame method)

 	partitionByRandom() (IDataFrame method)

 	partitionJsonFile() (IWorker method)

 	
 	partitionObjectFile() (IWorker method)

 	partitions() (IDataFrame method)

 	partitionTextFile() (IWorker method)

 	persist() (IDataFrame method)

 	plainFile() (IWorker method)

 	props() (IContext method)

R

 	
 	reduce() (IDataFrame method)

 	reduceByKey() (IPairDataFrame method)

 	
 	repartition() (IDataFrame method)

 	rm() (IProperties method)

S

 	
 	sample() (IDataFrame method)

 	sampleByKey() (IPairDataFrame method)

 	saveAsJsonFile() (IDataFrame method)

 	saveAsObjectFile() (IDataFrame method)

 	saveAsTextFile() (IDataFrame method)

 	sendCompressedFile() (ICluster method)

 	sendFile() (ICluster method)

 	set() (IProperties method)

 	setName() (ICluster method)

 	(IDataFrame method)

 	(IWorker method)

 	
 	sort() (IDataFrame method)

 	sortBy() (IDataFrame method)

 	sortByKey() (IPairDataFrame method)

 	start() (ICluster method)

 	(Ignis static method)

 	(IWorker method)

 	stop() (Ignis static method)

 	store() (IProperties method)

 	String (built-in class)

T

 	
 	take() (IDataFrame method)

 	takeOrdered() (IDataFrame method)

 	takeSample() (IDataFrame method)

 	textFile() (IWorker method)

 	threadId() (IContext method)

 	
 	toMap() (IProperties method)

 	top() (IDataFrame method)

 	toPair() (IDataFrame method)

 	treeAggregate() (IDataFrame method)

 	treeFold() (IDataFrame method)

 	treeReduce() (IDataFrame method)

U

 	
 	uncahe() (IDataFrame method)

 	
 	union() (IDataFrame method)

 	unpersist() (IDataFrame method)

V

 	
 	values() (IPairDataFrame method)

 	
 	vars() (IContext method)

 	voidCall() (IWorker method)

 nav.xhtml

 Table of Contents

 		
 IgnisHPC

 		
 Getting Started

 		
 Requirements

 		
 Installation

 		
 Creating IgnisHPC Containers

 		
 Deploying IgnisHPC Containers

 		
 Docker (Only local)

 		
 Nomad

 		
 Mesos

 		
 Slurm

 		
 Launching the first job

 		
 Launching without Container

 		
 API

 		
 BasicType Reference

 		
 Driver

 		
 Ignis

 		
 IProperties

 		
 ICluster

 		
 ISource

 		
 IWorker

 		
 IDataFrame

 		
 IDriverException

 		
 Executor

 		
 Docker Images

 		
 Background

 		
 Details

 		
 Base

 		
 Builder

 		
 common-Builder

 		
 driver-Builder

 		
 executor-Builder

 		
 common

 		
 core-builder

 		
 core images

 		
 core helper images

 		
 full

 		
 submitter

 		
 Properties

 		
 How to set properties?

 		
 Driver code

 		
 Enviroment variable

 		
 Submitter script

 		
 File

 		
 Mixed definition

 		
 Property list

 		
 Base Properties

 		
 Job Properties

 		
 Distributed Filesystem (DFS) Properties

 		
 Scheduler Properties

 		
 Driver Properties

 		
 Executor Properties

 		
 Partition Properties

 		
 Transport Properties

 		
 Module Properties

_static/minus.png

_static/plus.png

_static/file.png

